问题:求1nn个整数间的异或值,即 1 xor 2 xor 3 ... xor n

记 f(x, y) 为x到y的所有整数的异或值。

对 f(2^k, 2^(k+1) -1) (注意文章中的 ^ 表示的是“幂”,xor 表示“异或”,or 表示“或”):

2^k 到 2^(k+1) -1 这2^k个数,最高位(+k位)的1个数为2^k,

若 k >= 1,则2^k为偶数,将这2^k个数的最高位(+k位)去掉,异或值不变。

因而 f(2^k, 2^(k+1) -1) = f(2^k - 2^k, 2^(k+1) -1 -2^k) = f(0, 2^k -1)

因而 f(0, 2^(k+1) -1) = f(0, 2^k -1) xor f(2^k, 2^(k+1) -1) = 0 (k >= 1)

即 f(0, 2^k - 1) = 0 (k >= 2)

对 f(0, n)  (n >= 4) 设n的最高位1是在+k位(k >= 2),

f(0, n) = f(0, 2^k - 1) xor f(2^k, n) = f(2^k, n)

对2^k到n这n+1-2^k个数,最高位(+k位)共有 m = n+1-2^k 个1,去除最高位的1

当n为奇数时,m是偶数,因而 f(0, n) = f(2^k, n) = f(0, n - 2^k)

由于n - 2^k 与 n同奇偶,递推上面的公式,可得:f(0, n) = f(0, n % 4)

当 n % 4 == 1 时, f(0, n) = f(0, 1) = 1

当 n % 4 == 3 时, f(0, n) = f(0, 3) = 0

当n为偶数时,m是奇数,因而 f(0, n) = f(2^k, n) = f(0, n - 2^k)  or  2^k

也就是说,最高位1保持不变,由于n - 2^k 与 n同奇偶,递推上面的公式,

可得:f(0, n) = nn or  f(0, n % 4)   (nn为 n的最低2位置0)

当 n % 4 == 0 时, f(0, n) = n

当 n % 4 == 2 时, f(0, n) = nn or  3 = n + 1 (公式对 n = 2仍成立)

综上所述:

f(1, n)  =  f(0, n)  =

n      n % 4 == 0

1      n % 4 == 1

n +1   n % 4 == 2

0      n % 4 == 3

代码:

unsigned xor_n(unsigned n)

{

unsigned t = n & 3;

if (& 1) return t / 2u ^ 1;

return t / 2u ^ n;

}

作者:flyinghearts
出处:http://www.cnblogs.com/flyinghearts/
本文采用知识共享署名-非商业性使用-相同方式共享 2.5 中国大陆许可协议进行许可,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

求1到n这n个整数间的异或值 (O(1)算法)的更多相关文章

  1. 【严蔚敏】【数据结构题集(C语言版)】1.17 求k阶斐波那契序列的第m项值的函数算法

    已知k阶斐波那契序列的定义为 f(0)=0,f(1)=0,...f(k-2)=0,f(k-1)=1; f(n)=f(n-1)+f(n-2)+...+f(n-k),n=k,k+1,... 试编写求k阶斐 ...

  2. 求任意长度数组的最大值(整数类型)。利用params参数实现任意长度的改变。

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  3. Java 整数间的除法运算如何保留所有小数位?

      1.情景展示 double d = 1/10; System.out.println(d); 返回的结果居然是0.0!这是怎么回事儿? 2.原因分析 第一步:你会发现用运算结果也可以用int类型接 ...

  4. 求1到n,n个整数的全排列

    package com.dong.harder; public class AllArrays { public static void main(String[] args) { // TODO A ...

  5. 线性基求第k小异或值

    题目链接 题意:给由 n 个数组成的一个可重集 S,每次给定一个数 k,求一个集合 \(T \subseteq S\), 使得集合 T 在 S 的所有非空子集的不同的异或和中, 其异或和 \(T_1 ...

  6. python中的整数、浮点数和布尔值

    整数和浮点数有那个四则运算: 两种类型的数可以直接进行加减,当整数和浮点数进行加减的时候,结果会自动的变为浮点数,其中除法运算是“/”来表示的, 而余数的算术符号是“%”来表示的. 在布尔值的判断中我 ...

  7. 给定一个数组,求如果排序后,相邻两个元素的最大差值,要求时间复杂度为O(N)

    第一种方法: 计数排序后,然后找出两两之间的最大差值 计数排序的时间复杂度是O(N) public class CountSort { public static void main(String[] ...

  8. 求LR(0)文法的规范族集和ACTION表、GOTO表的构造算法

    原理 数据结构 // GO private static Map<Map<Integer,String>,Integer> GO = new HashMap<Map< ...

  9. C_输入一个整数N,输出从0~N(算法思考)

    1.for循环实现 #include <stdio.h> #include <time.h> clock_t start, stop; double duration; voi ...

随机推荐

  1. centos6.5下,使用虚拟ftp用户

    因为业务的问题,有位客户的账户总是出现各种问题,本人对于acl的使用又不是很会,所以和同事一起研究了一下这个虚拟ftp用户. Centos6.5 1 需求 为了保证系统的安全性,现对系统中vsftpd ...

  2. Java HashSet和ArrayList的查找Contains()时间复杂度

    今天在刷leetCode时,碰到了一个题是这样的. 给定一个整数数组,判断是否存在重复元素. 如果任何值在数组中出现至少两次,函数返回 true.如果数组中每个元素都不相同,则返回 false. 看到 ...

  3. webpack 配置es6 语法

    使用babel来编译es6的语法; 1.在终端上输入指令 npm install webpack babel-loader babel-core babel-preset-es2015 --save- ...

  4. Download QT

    http://download.qt.io/archive/qt/

  5. thinkphp 替换入口

    3.2版本支持根据当前的运行环境生成Lite文件,可以替换框架的入口文件或者应用入口文件,提高运行效率. 我们的建议是在生产环境中关闭调试模式后生成Lite文件.注意,目前SAE平台不支持直接生成Li ...

  6. Android下载Android源码

    使用Git,命令是:git clone http://android.googlesource.com/platform/frameworks/base.git

  7. sqoop2安装总结

    sqoop2安装 1. 下载解压缩 此次安装版本为1.99.6 # Decompress Sqoop distribution tarball tar -xvf sqoop-<version&g ...

  8. Spring源码由浅入深系列五 GetBean

    获取bean的过程如上图所示.下一章将继续图示讲解createBean的过程.

  9. 3.7.4 Tri0 and tri1 nets

    Frm: IEEE Std 1364™-2001, IEEE Standard Verilog® Hardware Description Language The tri0 and tri1 net ...

  10. 内置Jetty配置JSP支持过程中的常见报错

    目录 1. 常见报错及解决 1.1 JSP support not configured 1.2 JSTL标签解析 1.3 JSP编译 1.4 JSP实现依赖 1.5 EL表达式支持 2. 小结 1. ...