题目描述

  农夫JOHN为牛们做了很好的食品,但是牛吃饭很挑食。每一头牛只喜欢吃一些食品和饮料而别的一概不吃。虽然他不一定能把所有牛喂饱,他还是想让尽可能多的牛吃到他们喜欢的食品和饮料。

  农夫JOHN做了F (1<=F<=100) 种食品和准备了D(1<=D<=100)种饮料。他有N(1<=N<=100)头牛,现在已经知道他的每头牛是否愿意吃某种食物和喝某种饮料。农夫JOHN想给每一头牛一种食品和一种饮料,使得尽可能多的牛得到喜欢的食物和饮料。

  每一件食物和饮料只能由一头牛来用。例如如果食物2被一头牛吃掉了,没有别的牛能吃食物2。

输入

  第一行: 三个数:N, F和D。

  第2..N+1行:每一行有两个数开始F_i和D_i,分别是第i头牛可以吃的食品数和可以喝的饮料数。接下来下F_i个整数是第i头牛可以吃的食品号,再下面的D_i个整数是第i头牛可以喝的饮料号码。

输出

  文件输出仅一行为一个整数,表示最多可以喂饱牛的数目。

样例输入

4 3 3

2 2 1 2 3 1

2 2 2 3 1 2

2 2 1 3 1 2

2 1 1 3 3

样例输出

3

解法

网络流建模:

源点向每个食物连一条容量为1的边;

每头牛拆成两个点xi,yi,这两个点连一条容量为1的边;

这头牛的喜好食物向xi连一条容量为1的边,yi向喜好饮品连一条容量为1的边;

每个饮品向汇点连一条容量为1的边。


检验:

每头牛只能占用一个饮品和食品,所以把牛拆点。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define ll long long
#define sqr(x) ((x)*(x))
#define ln(x,y) int(log(x)/log(y))
#define food(x) (1+x)
#define drink(x) (1+m1+x)
#define cow(x) (1+m1+m2+x)
#define cow1(x) (1+m1+m2+n+x)
using namespace std;
const char* fin="ex1611.in";
const char* fout="ex1611.out";
const int inf=0x7fffffff;
const int maxn=1007,maxm=maxn*10;
int n,m1,m2,i,j,k,ans=0;
int num,tot=1,fi[maxn],ne[maxm],la[maxm],va[maxm];
int bz[maxn],cnt[maxn];
void add_line(int a,int b,int c){
tot++;
ne[tot]=fi[a];
la[tot]=b;
va[tot]=c;
fi[a]=tot;
}
void add(int a,int b,int c){
add_line(a,b,c);
add_line(b,a,0);
}
int gap(int v,int flow){
int i,use=0,k;
if (v==num) return flow;
for (k=fi[v];k;k=ne[k])
if (va[k] && bz[v]==bz[la[k]]+1){
i=gap(la[k],min(va[k],flow-use));
use+=i;
va[k]-=i;
va[k^1]+=i;
if (use==flow || bz[1]==num) return use;
}
if (!--cnt[bz[v]]) bz[1]=num;
cnt[++bz[v]]++;
return use;
}
int main(){
scanf("%d%d%d",&n,&m1,&m2);
num=1+m1+m2+n+n+1;
for (i=1;i<=n;i++){
int iiii;
add(cow(i),cow1(i),1);
scanf("%d",&j);
scanf("%d",&iiii);
for (;j;j--){
scanf("%d",&k);
add(food(k),cow(i),1);
}
for (;iiii;iiii--){
scanf("%d",&k);
add(cow1(i),drink(k),1);
}
}
for (i=1;i<=m1;i++) add(1,food(i),1);
for (i=1;i<=m2;i++) add(drink(i),num,1);
cnt[0]=num;
while (bz[1]<num) ans+=gap(1,inf);
printf("%d",ans);
return 0;
}

启发

通过拆点来限制每头牛的贡献。

【JZOJ1611】Dining的更多相关文章

  1. 【USACO】Dining

    [题目链接] [JZXX]点击打开链接 [caioj]点击打开链接 [算法] 拆点+网络流 [代码] #include<bits/stdc++.h> using namespace std ...

  2. 【BZOJ1226】[SDOI2009]学校食堂Dining 状压DP

    [BZOJ1226][SDOI2009]学校食堂Dining Description 小F 的学校在城市的一个偏僻角落,所有学生都只好在学校吃饭.学校有一个食堂,虽然简陋,但食堂大厨总能做出让同学们满 ...

  3. 【BZOJ】1711: [Usaco2007 Open]Dining吃饭

    [算法]最大流 [题解] S连向食物连向牛连向牛‘连向饮料连向T. 经典的一个元素依赖于两个元素的建图方式. #include<cstdio> #include<algorithm& ...

  4. 【SDOI2009】解题汇总

    又开了波专题,感觉就和炉石开冒险一样...(说的好像我有金币开冒险似的) /---------------------------------------------/ BZOJ-1226 [SDOI ...

  5. 【转载】图论 500题——主要为hdu/poj/zoj

    转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...

  6. 【HDOJ图论题集】【转】

    =============================以下是最小生成树+并查集====================================== [HDU] How Many Table ...

  7. 图论常用算法之一 POJ图论题集【转载】

    POJ图论分类[转] 一个很不错的图论分类,非常感谢原版的作者!!!在这里分享给大家,爱好图论的ACMer不寂寞了... (很抱歉没有找到此题集整理的原创作者,感谢知情的朋友给个原创链接) POJ:h ...

  8. Python高手之路【六】python基础之字符串格式化

    Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...

  9. 【原】谈谈对Objective-C中代理模式的误解

    [原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...

随机推荐

  1. JSP-案例-商品增删改

    商品的增删改查 1显示 部分代码 Dao public List<Product> findAllProduct() throws SQLException { QueryRunner r ...

  2. 2019-1-29-Roslyn-使用-WriteLinesToFile-解决参数过长无法传入

    title author date CreateTime categories Roslyn 使用 WriteLinesToFile 解决参数过长无法传入 lindexi 2019-01-29 16: ...

  3. 2019-8-31-C#-程序集数量对软件启动性能的影响

    title author date CreateTime categories C# 程序集数量对软件启动性能的影响 lindexi 2019-08-31 16:55:58 +0800 2018-10 ...

  4. 跟我一起做一个vue的小项目(八)

    接下来我们进行的是城市选择页面的路由配置 添加city.vue,使其点击城市,然后跳转到city页面 //router.js import Vue from 'vue' import Router f ...

  5. Laravel使用EasyWechat 进行微信支付

    微信支付和EasyWeChat这个包都是巨坑, 文档写的稀烂, 记录下防止以后又重复踩坑: 安装教程在这: https://www.jianshu.com/p/82d688e1fd2a

  6. COOK50小结

    题目链接 很遗憾.看到第五题的通过人数就不敢做了.待日后补上. A题 求最长的连续子序列,使得他们满足gcd为1. 如果有相邻的两个数的gcd为1,那么整个序列的gcd值也就是1, 否则就是该序列不存 ...

  7. vmware 安装 黑群晖

    先做一个启动盘 然后竟然启动不了 算了 不管了,去网上找个别人做好的吧 添加硬盘的时候,需要选择sata, 比如安装6.2需要这个版本的引导,就直接选中这个,因为我自己做的启动盘不管用,也不知道为嘛 ...

  8. CSS 定位 (Positioning)

    CSS 定位 (Positioning) 属性允许你对元素进行定位. CSS 定位和浮动 CSS 为定位和浮动提供了一些属性,利用这些属性,可以建立列式布局,将布局的一部分与另一部分重叠,还可以完成多 ...

  9. CSS Reset(CSS重置)

    CSS Reset是指重设浏览器的样式.在各种浏览器中,都会对CSS的选择器默认一些数值,譬如当h1没有被设置数值时,显示一定大小. 但并不是所有的浏览器都使用一样的数值,所以有了CSS Reset, ...

  10. 使用Spring Cache + Redis + Jackson Serializer缓存数据库查询结果中序列化问题的解决

    应用场景 我们希望通过缓存来减少对关系型数据库的查询次数,减轻数据库压力.在执行DAO类的select***(), query***()方法时,先从Redis中查询有没有缓存数据,如果有则直接从Red ...