P2766 最长不下降子序列问题

考虑我们是如何\(dp\)这个\(LIS\)的。

我们是倒着推,设置\(dp(i)\)代表以\(i\)为起点的\(LIS\)是多少。转移太显然了

\[dp(i)=max\{dp(j)\}+1,data[i]\le data[j]
\]

想一想一个合法的\(LIS\)方案代表着什么,代表着它是由这个式子一个一个推出来的。

考虑一个数字只能用一次,那么我们直接拆成两个点\(v_0,v_1\)分别代表一个数字的入度和出度,连一条\(v_1v_2,cap=1\)的边。这样就模拟了一个数字可以被前面多个都相中但是只能往后面相中一个的要求。

考虑如何构造方案,这个东西是个灵感,就是还原\(dp\)的过程,这样就可以得到合法方案。

模型这样建立

\[(i_0,i_1,1)
\\
(S,i_0,inf),dp(i)=1
\\
(i_1,T,inf),dp(k)=ans
\]

这样就好了。

实际上,这样建模体现了"且"的关系,这种建模方式在以后可能大有用处。

#include<bits/stdc++.h>

using namespace std;typedef long long ll;
#define DRP(t,a,b) for(register int t=(a),edd=(b);t>=edd;--t)
#define RP(t,a,b) for(register int t=(a),edd=(b);t<=edd;++t)
#define ERP(t,a) for(register int t=head[a];t!=-1;t=e[t].nx)
#define midd register int mid=(l+r)>>1
#define TMP template < class ccf >
#define lef l,mid,pos<<1
#define rgt mid+1,r,pos<<1|1
#define pushup(pos) (seg[pos]=seg[pos<<1]+seg[pos<<1|1])
TMP inline ccf qr(ccf b){
register char c=getchar();register int q=1;register ccf x=0;
while(c<48||c>57)q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)x=x*10+c-48,c=getchar();
return q==-1?-x:x;}
TMP inline ccf Max(ccf a,ccf b){return a<b?b:a;}
TMP inline ccf Min(ccf a,ccf b){return a<b?a:b;}
TMP inline ccf Max(ccf a,ccf b,ccf c){return Max(a,Max(b,c));}
TMP inline ccf Min(ccf a,ccf b,ccf c){return Min(a,Min(b,c));}
TMP inline void READ(ccf* _arr,int _n){RP(t,1,_n)_arr[t]=qr((ccf)1);}
//----------------------template&IO--------------------------- const int maxn=5e2+15;
const int maxm=maxn<<3;
int dp[maxn];
int data[maxn];
const int inf=0x3f3f3f3f;
int n,S,T;
struct E{
int to,w,nx;
}e[maxm<<1],tmp[maxm<<1];
int cnt(-1);
int head[maxm];
int id[maxn][2];
int sz;
int ans1,ans2,ans3;
int d[maxm];
int cur[maxm]; inline void add(int fr,int to,int w,bool f){
e[++cnt]=(E){to,w,head[fr]};head[fr]=cnt;
if(f) add(to,fr,0,0);
} queue < int > q;
inline bool bfs(){
while(not q.empty()) q.pop();
RP(t,1,sz) cur[t]=head[t],d[t]=inf+1;
d[S]=1;q.push(S);
while(not q.empty()){
register int now=q.front();q.pop();
if(now==T) break;
ERP(t,now){
if(d[e[t].to]>d[now]+1&&e[t].w>0){
d[e[t].to]=d[now]+1;
q.push(e[t].to);
}
}
}
return d[T]<inf;
} int dfs(int now,int fl){
if(now==T||!fl) return fl;
register int ret=0;
for(register int t=cur[now],en;t!=-1;t=e[t].nx){
cur[now]=t;
if(d[e[t].to]==d[now]+1){
en=dfs(e[t].to,Min(fl,e[t].w));
if(en){e[t].w-=en;e[t^1].w+=en;fl-=en;ret+=en;}
if(not fl)break;
}
}return ret;
} inline void dinic(int& ret){while(bfs()) ret+=dfs(S,inf);} int main(){
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif
memset(head,-1,sizeof head);
n=qr(1);
READ(data,n);
RP(t,1,n) dp[t]=1;ans1=1;
DRP(t,n,1) RP(i,t+1,n) if(data[t]<=data[i]) ans1=Max((dp[t]=Max(dp[t],dp[i]+1)),ans1);
S=++sz;T=++sz;
DRP(t,n,1){
id[t][0]=++sz;id[t][1]=++sz;
add(id[t][0],id[t][1],1,1);
if(dp[t]==1){add(id[t][1],T,inf,1);}
if(dp[t]==ans1){add(S,id[t][0],inf,1);}
RP(i,t+1,n) if(data[i]>=data[t]&&dp[i]+1==dp[t]) add(id[t][1],id[i][0],1,1);
}
RP(t,0,cnt) tmp[t]=e[t];
dinic(ans2);
RP(t,0,cnt) e[t]=tmp[t];
add(id[1][0],id[1][1],inf,1);
add(id[n][0],id[n][1],inf,1);
dinic(ans3);
if(ans1==1) ans2=ans3=n;
printf("%d\n%d\n%d\n",ans1,ans2,ans3);
return 0;
}

[**P2766** 最长不下降子序列问题](https://www.luogu.org/problemnew/show/P2766)的更多相关文章

  1. P2766 最长不下降子序列问题 网络流

    link:https://www.luogu.org/problemnew/show/P2766 题意 给定正整数序列x1,...,xn . (1)计算其最长不下降子序列的长度s. (2)计算从给定的 ...

  2. 【24题】P2766最长不下降子序列问题

    网络流二十四题 网络流是个好东西,希望我也会. 网络流?\(orz\ zsy!!!!!\) P2766 最长不下降子序列问题 考虑我们是如何\(dp\)这个\(LIS\)的. 我们是倒着推,设置\(d ...

  3. P2766 最长不下降子序列问题 网络流重温

    P2766 最长不下降子序列问题 这个题目还是比较简单的,第一问就是LIS 第二问和第三问都是网络流. 第二问要怎么用网络流写呢,首先,每一个只能用一次,所以要拆点. 其次,我们求的是长度为s的不下降 ...

  4. 网络流 之 P2766 最长不下降子序列问题

    题目描述 «问题描述: 给定正整数序列x1,...,xn . (1)计算其最长不下降子序列的长度s. (2)计算从给定的序列中最多可取出多少个长度为s的不下降子序列. (3)如果允许在取出的序列中多次 ...

  5. 【题解】Luogu P2766 最长不下降子序列问题

    原题传送门 实际还是比较套路的建图 先暴力dp一下反正数据很小 第一小问的答案即珂以求出数列的最长不下降子序列的长度s 考虑第二问如何做: 将每个点拆点 从前向后连一条流量为1的边 如果以它为终点的最 ...

  6. P2766 最长不下降子序列问题

    题目描述 «问题描述: 给定正整数序列x1,...,xn . (1)计算其最长不下降子序列的长度s. (2)计算从给定的序列中最多可取出多少个长度为s的不下降子序列. (3)如果允许在取出的序列中多次 ...

  7. 洛谷P2766 最长不下降子序列问题(最大流)

    传送门 第一问直接$dp$解决,求出$len$ 然后用$f[i]$表示以$i$为结尾的最长不下降子序列长度,把每一个点拆成$A_i,B_i$两个点,然后从$A_i$向$B_i$连容量为$1$的边 然后 ...

  8. 【Luogu】P2766最长不下降子序列问题(暴力网络流)

    题目链接 水题qwq,数据都那么水. 我要是出数据的人我就卡$n^3$建图. qwq. 然而这么水的题我!居!然!没!有!1!A!!还!提!交!了!五!遍!!! md从现在开始要锻炼1A率了 看我从今 ...

  9. 洛谷 P2766 最长不下降子序列问【dp+最大流】

    死于开小数组的WA?! 第一问n方dp瞎搞一下就成,f[i]记录以i结尾的最长不下降子序列.记答案为mx 第二问网络流,拆点限制流量,s向所有f[i]为1的点建(s,i,1),所有f[i]为mx(i+ ...

随机推荐

  1. 洛谷 3174 [HAOI2009]毛毛虫

    题目描述 对于一棵树,我们可以将某条链和与该链相连的边抽出来,看上去就象成一个毛毛虫,点数越多,毛毛虫就越大.例如下图左边的树(图 1 )抽出一部分就变成了右边的一个毛毛虫了(图 2 ). 输入输出格 ...

  2. Linux系统服务及软件包的管理

     要点回顾 free命令查看内存 整理buffer与cache的作用 1.buffer(缓冲) 是为了提高内存和硬盘(或其他I/O设备)之间的数据交换的速度而设计的. 2.cache(缓存) 从CPU ...

  3. centos 磁盘挂载

    1.更改磁盘格式 fdisk -l fdisk /dev/vdb mkfs.xfs /dev/vdb1 mkfs.xfs /dev/vdb1 -f 2.查看UUID blkid 3.挂载文件夹 vim ...

  4. Postman接口测试工具学习笔记

    - 新建测试接口 在Postman中有两种新建测试接口的方式,第一种是图片右上角的,点击可以选择 request 请求进行新建 选择 Request 以后会出现下面图片的对话框,让你输入一个保存接口的 ...

  5. 走过的laravel-admin 的坑

    一.http://laravel-admin.org/docs/#/zh/  大家可以根据这个安装1.5 版本的laravel后台管理, 他很方便哦,有很多方法他都自己自己封装了. 二.大家如果想好好 ...

  6. java io流与序列化反序列化

    java的io是实现输入和输出的基础,可以方便的实现数据的输入和输出操作. 序列化 (Serialization)是将对象的状态信息转换为可以存储或传输的形式的过程.在序列化期间,对象将其当前状态写入 ...

  7. react入门:todo应用

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. P1106 细胞分裂

    题目描述 Hanks博士是BT(Bio-Tech,生物技术)领域的知名专家.现在,他正在为一个细胞实验做准备工作:培养细胞样本. Hanks博士手里现在有 \(N\) 种细胞,编号从 \(1\) 到 ...

  9. H3C 链路聚合配置举例

  10. 2019-9-20-SharpDx-的代替项目

    title author date CreateTime categories SharpDx 的代替项目 lindexi 2019-09-20 09:13:59 +0800 2019-09-20 0 ...