传送门

AND Minimum Spanning Tree

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 378    Accepted Submission(s): 190

Problem Description
You are given a complete graph with N vertices, numbered from 1 to N. 
The weight of the edge between vertex x and vertex y (1<=x, y<=N, x!=y) is simply the bitwise AND of x and y. Now you are to find minimum spanning tree of this graph.
 
Input
The first line of the input contains an integer T (1<= T <=10), the number of test cases. Then T test cases follow. Each test case consists of one line containing an integer N (2<=N<=200000).
 
Output
For each test case, you must output exactly 2 lines. You must print the weight of the minimum spanning tree in the 1st line. In the 2nd line, you must print N-1 space-separated integers f2, f3, … , fN, implying there is an edge between i and fi in your tree(2<=i<=N). If there are multiple solutions you must output the lexicographically smallest one. A tree T1 is lexicographically smaller than tree T2, if and only if the sequence f obtained by T1 is lexicographically smaller than the sequence obtained by T2.
 
Sample Input
2
3
2
 
Sample Output
1
1 1
0
1

Hint

In the 1st test case, w(1, 2) = w(2, 1) = 0, w(1, 3) = w(3, 1) = 1, w(2, 3) = w(3, 2) = 2. There is only one minimum spanning tree in this graph, i.e. {(1, 2), (1, 3)}.
For the 2nd test case, there is also unique minimum spanning tree.

 
Source
 
 
题意:

有N个结点,两两之间的权值为两个点取与

比如说结点2和结点3之间的权值 W(2,3) = 10&11 = 10

问整个图的最小生成树

第一行输出最小生成树的权值和

第二行分别输出2到N节点连接的点(如果一个节点连接了2个点的话,需要输出小的那个)

思路:

举个例子:
10011(二进制)最好和哪个结点连接呢
无疑是 00100(二进制)
感受一下?
其实本质就是找到第一个非1的位置,其他的所有位置都置为0就OK。

这里有个特殊情况
如果是111?(二进制)
那么最优的连接结点就是1000。
但是如果N恰好就是7,那么就没有1000(十进制是8)来和111(十进制是7)组队了。
111只能去和1连接(被迫)
所以第一行答案要么是1要么是0

判断一下N是不是二的幂次减1就行
第二行的话可以按照上面的规律去找,即找到第一个非1的位置为1,其他的都为0

#include"bits/stdc++.h"
using namespace std;
typedef long long LL;
int a[];
bool judge(int x){
int n = x&(x-);
return n == ;
}
/*
找到二进制中第一个不是0的
比如说 1001
返回的是 0010
1111返回的是10000
*/
int getMin(int x){
int ans = ;
while(true){
int k = x&;
x >>= ;
if(k == ){
break;
}
ans <<= ;
}
return ans;
}
int main()
{
int _;
for(scanf("%d",&_);_--;){
int n;
scanf("%d",&n);
memset(a,,sizeof(int)*(n+));
judge(n+)?puts(""):puts("");
for(int i = ; i <= n ; i++){
int Min = getMin(i);
Min > n? printf(""):printf("%d",Min);//判断一下找到的数是不是大于n
i == n ? printf("\n"):printf(" ");
}
}
}
/*
2
3
2
*/

多校 HDU - 6614 AND Minimum Spanning Tree (二进制)的更多相关文章

  1. 【HDU 4408】Minimum Spanning Tree(最小生成树计数)

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  2. HDU 6614 AND Minimum Spanning

    Time limit 1000 ms Memory limit 131072 kB OS Windows 中文题意 给一张n个点的无向完全图(输入一个n就完事了),每个点标号为1~n,每条边的边权为它 ...

  3. HDU 4408 Minimum Spanning Tree 最小生成树计数

    Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  4. hdu 4408 Minimum Spanning Tree

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  5. 数据结构与算法分析–Minimum Spanning Tree(最小生成树)

    给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...

  6. Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST

    E. Minimum spanning tree for each edge   Connected undirected weighted graph without self-loops and ...

  7. CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  8. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  9. MST(Kruskal’s Minimum Spanning Tree Algorithm)

    You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...

随机推荐

  1. python 类的创建

  2. webpack配置vue项目

    npm init 安装webpack,webpack-cli 新建src目录,在src目录下新建main.js

  3. Linux进程管理(三、 线程)

    // ---- refer glibc, pthread_create.c ----// int __pthread_create_2_0 (newthread, attr, start_routin ...

  4. php的一些误解

    1.php函数和方法是不用的:类的方法可以设定访问权限,需要通过对象或者类来调用:函数是公共的,都可以使用.

  5. laravel 项目本地版本为5.5,线上mysql 为5.7.21版本,执行严格模式

    看到网上很多说修改 但是在mysql 5.7中没有这个参数设置,故放弃: 结合本项目sina_id 10位超过int的最大范围4294967295,所以报错,修改为bigint  即可.

  6. 【7.18总结】KM算法

    先贴代码,参考博客来源于:https://blog.csdn.net/zyy173533832/article/details/11519291#commentBox 例题:HDU 2255 题意:n ...

  7. ios开发――解决UICollectionView的cell间距与设置不符问题

    在用UICollectionView展示数据时,有时我们希望将cell的间距调成一个我们想要的值,然后查API可以看到有这么一个属性: - (CGFloat)minimumInteritemSpaci ...

  8. UVA_694:The Collatz Sequence

    Language: C++ 4.8.2 #include<stdio.h> int main(void) { long long int m, n, copy_m; ; ; ) { sca ...

  9. datetimepicker —— 日期选择控件

    一.依赖 <link rel="stylesheet" href="css/bootstrap.min.css"> <link rel=&qu ...

  10. AcWing95. 费解的开关 枚举+位运算

    这道题的确比较难想,首先我们知道图比较小,有可能是枚举,那么该如何枚举呢??? 你可以发现,我们只要把第一排定了,并且保证第一排不准动,那么答案就定了 也就是说,我们首先用二进制枚举,枚举第一行需要翻 ...