Euler Sums系列(四)
\[\Large\displaystyle \sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}=\mathbf{G}-\frac{\pi}{2}\ln(2)\]
\(\Large\mathbf{Proof:}\)
\(\Large\mathbf{Method~One:}\)
Using the relation \(\displaystyle H_{n} = \int_{0}^{1} \frac{1-x^n}{1-x} \mathrm{d}x\), we find that the series reduces to
\[\begin{align*} \sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1} &= \int_{0}^{1} \frac{2}{1-x^2} \left( \frac{\pi x}{4} - \arctan x \right) \mathrm dx \\ &= \int_{0}^{1} \frac{2}{1-x^2} \left( \arctan \left( \frac{1-x}{1+x} \right) - \frac{\pi (1-x)}{4} \right) \mathrm dx \\ &= \int_{0}^{1} \frac{2}{1-x^2} \arctan \left( \frac{1-x}{1+x} \right) \mathrm dx - \int_{0}^{1} \frac{\pi}{2(1+x)} \mathrm dx \end{align*}\]
For the former one, we use the substitution \(\displaystyle t = \frac{1-x}{1+x}\) to obtain that
\[\int_{0}^{1} \frac{2}{1-x^2} \arctan \left( \frac{1-x}{1+x} \right) \mathrm dx = \int_{0}^{1} \frac{\arctan t}{t} \mathrm dt = \mathbf{G}\]
The latter one reduces to \(\displaystyle -\frac{\pi}{2} \ln 2\), so the conclusion follows.
\[\Large\boxed{\displaystyle \sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}=\color{Blue}{\mathbf{G}-\frac{\pi}{2}\ln(2)}}\]
\(\Large\mathbf{Method~Two:}\)
\[\sum_{n=1}^\infty (-1)^n H_n t^n = \frac{-\ln(1+t)}{1+t}\]
Let \(t=x^2\)
\[\sum_{n=1}^\infty (-1)^n H_n x^{2n} = \frac{-\ln(1+x^2)}{1+x^2}\]
Integrating with respect to \(x\) and interchanging integral and summation we get
\[\begin{align*}
&\sum_{n=1}^\infty (-1)^n H_n \int_0^1 x^{2n}\mathrm dx = - \int_0^1 \frac{\ln(1+x^2)}{1+x^2}\mathrm dx\\
&\sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}=-\int_0^1 \frac{\ln(1+x^2)}{1+x^2}\mathrm dx
\end{align*}\]
In the integral, substitute \(\displaystyle x=\tan(\theta)\):
\[\sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1} = 2\int_0^{\frac{\pi}{4}}\ln(\cos \theta) \mathrm d\theta\]
The remaining integral is evaluated using a fourier series:
\[\begin{align*}
\sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}
&= 2 \int_0^{\frac{\pi}{4}}\left( -\ln(2)-\sum_{j=1}^\infty \frac{(-1)^j \cos(2j\theta)}{j}\right)\mathrm d\theta \\ &=-\frac{\pi}{2}\ln(2) -2\sum_{j=1}^\infty \frac{(-1)^j}{j}\int_0^{\frac{\pi}{4}}\cos(2j \theta) \mathrm d\theta \\&= -\frac{\pi}{2}\ln(2)+\sum_{j=1}^\infty \frac{(-1)^{j+1}}{j^2}\sin \left( \frac{\pi j}{2}\right) \\
&=\Large\boxed{\displaystyle \color{Blue}{\mathbf{G}-\frac{\pi}{2}\ln(2)}}
\end{align*}\]
Euler Sums系列(四)的更多相关文章
- Euler Sums系列(六)
\[\Large\displaystyle \sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}\] \(\Large\mathbf{Solution:}\) Let \ ...
- Euler Sums系列(五)
\[\Large\displaystyle \sum_{n=1}^{\infty} \frac{\widetilde{H_n}}{n^{3}}\] where \(\widetilde{H_n}\) ...
- Euler Sums系列(一)
\[\Large\sum_{n=1}^{\infty} \frac{H_{n}}{2^nn^4}\] \(\Large\mathbf{Solution:}\) Let \[\mathcal{S}=\s ...
- Euler Sums系列(三)
\[\Large\sum_{n=1}^{\infty}\frac{\left(H_{n}^{(2)}\right)^{2}}{n^{2}}=\frac{19}{24}\zeta(6)+\zeta^{2 ...
- Euler Sums系列(二)
\[\Large\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^2}=\frac{21}{16}\zeta(3)\] \(\Large\mathbf{Proof:}\ ...
- 前端构建大法 Gulp 系列 (四):gulp实战
前端构建大法 Gulp 系列 (一):为什么需要前端构建 前端构建大法 Gulp 系列 (二):为什么选择gulp 前端构建大法 Gulp 系列 (三):gulp的4个API 让你成为gulp专家 前 ...
- Netty4.x中文教程系列(四) 对象传输
Netty4.x中文教程系列(四) 对象传输 我们在使用netty的过程中肯定会遇到传输对象的情况,Netty4通过ObjectEncoder和ObjectDecoder来支持. 首先我们定义一个U ...
- S5PV210开发系列四_uCGUI的移植
S5PV210开发系列四 uCGUI的移植 象棋小子 1048272975 GUI(图形用户界面)极大地方便了非专业用户的使用,用户无需记忆大量的命令,取而代之的是能够通过窗体.菜单 ...
- WCF编程系列(四)配置文件
WCF编程系列(四)配置文件 .NET应用程序的配置文件 前述示例中Host项目中的App.config以及Client项目中的App.config称为应用程序配置文件,通过该文件配置可控制程序的 ...
随机推荐
- Lingo简单入门,以及对线性规划做敏感性分析设置
Lingo中用!表示注释,注释结束用;表示,lingo不区分大小写,运行时会自动统一装换成大写 编程步骤: 1.推算出正确的模型 2.确定描述集,定义集合 3.确定变量 4.正确写出每个式子 常用函数 ...
- 转载:HRTF virtaul surround
https://blog.csdn.net/Filwl_/article/details/50503558 https://blog.csdn.net/lwsas1/article/details/5 ...
- 基于原生PHP的路由分配实现
对于由原生PHP写成的独立PHP框架,利用单一入口文件实现路径的访问.这时我们会遇到的首要问题是:文件的相互包含,其次就是路由分配.当我们不利用成熟的PHP框架进行web开发时,我们就会发现上述两个问 ...
- [AGC027C]ABland Yard
Description AGC027C 给定一张图,点有标号A或B,计算是否对于任意的一个由AB构成的字符串都在图中有对应的路径. Solution 观察可以发现,如果有个环(不一定是简单环)是AAB ...
- 10-Java-JSTL标签库的使用
使用JSTL标签库使用 第一步:引入相关jar包到WEB-INF/lib/,JSTL标签库(standard.jar,jstl.jar) 第二步:在JSP文件中通过 taglib指令引入标签库,例如: ...
- 修改vsftpd的默认根目录/var/ftp/pub到其他目录
修改ftp的根目录只要修改/etc/vsftpd/vsftpd.conf文件即可: 加入如下几行: local_root=/var/www/html chroot_local_user=YES ano ...
- (DFS)HDU_1241 Oil Deposits
HDU_1241 Oil Deposits Problem Description The GeoSurvComp geologic survey company is responsible f ...
- POJ 3991 括号匹配问题(贪心)
I’m out of stories. For years I’ve been writing stories, some rather silly, just to make simple prob ...
- SQL Server 函数大全
本文链接:https://blog.csdn.net/qq_15028299/article/details/81330854SQL2008 表达式:是常量.变量.列或函数等与运算符的任意组合.htt ...
- Panda的学习之路(1)——series 和 Dataframe
一.Series panda最基本的对象 # pandas的基础s=pd.Series([1,3,6,np.nan,44,1])#建立个简单的基本对象 类似一个一位数组print("建立个简 ...