Euler Sums系列(四)
\[\Large\displaystyle \sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}=\mathbf{G}-\frac{\pi}{2}\ln(2)\]
\(\Large\mathbf{Proof:}\)
\(\Large\mathbf{Method~One:}\)
Using the relation \(\displaystyle H_{n} = \int_{0}^{1} \frac{1-x^n}{1-x} \mathrm{d}x\), we find that the series reduces to
\[\begin{align*} \sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1} &= \int_{0}^{1} \frac{2}{1-x^2} \left( \frac{\pi x}{4} - \arctan x \right) \mathrm dx \\ &= \int_{0}^{1} \frac{2}{1-x^2} \left( \arctan \left( \frac{1-x}{1+x} \right) - \frac{\pi (1-x)}{4} \right) \mathrm dx \\ &= \int_{0}^{1} \frac{2}{1-x^2} \arctan \left( \frac{1-x}{1+x} \right) \mathrm dx - \int_{0}^{1} \frac{\pi}{2(1+x)} \mathrm dx \end{align*}\]
For the former one, we use the substitution \(\displaystyle t = \frac{1-x}{1+x}\) to obtain that
\[\int_{0}^{1} \frac{2}{1-x^2} \arctan \left( \frac{1-x}{1+x} \right) \mathrm dx = \int_{0}^{1} \frac{\arctan t}{t} \mathrm dt = \mathbf{G}\]
The latter one reduces to \(\displaystyle -\frac{\pi}{2} \ln 2\), so the conclusion follows.
\[\Large\boxed{\displaystyle \sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}=\color{Blue}{\mathbf{G}-\frac{\pi}{2}\ln(2)}}\]
\(\Large\mathbf{Method~Two:}\)
\[\sum_{n=1}^\infty (-1)^n H_n t^n = \frac{-\ln(1+t)}{1+t}\]
Let \(t=x^2\)
\[\sum_{n=1}^\infty (-1)^n H_n x^{2n} = \frac{-\ln(1+x^2)}{1+x^2}\]
Integrating with respect to \(x\) and interchanging integral and summation we get
\[\begin{align*}
&\sum_{n=1}^\infty (-1)^n H_n \int_0^1 x^{2n}\mathrm dx = - \int_0^1 \frac{\ln(1+x^2)}{1+x^2}\mathrm dx\\
&\sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}=-\int_0^1 \frac{\ln(1+x^2)}{1+x^2}\mathrm dx
\end{align*}\]
In the integral, substitute \(\displaystyle x=\tan(\theta)\):
\[\sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1} = 2\int_0^{\frac{\pi}{4}}\ln(\cos \theta) \mathrm d\theta\]
The remaining integral is evaluated using a fourier series:
\[\begin{align*}
\sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}
&= 2 \int_0^{\frac{\pi}{4}}\left( -\ln(2)-\sum_{j=1}^\infty \frac{(-1)^j \cos(2j\theta)}{j}\right)\mathrm d\theta \\ &=-\frac{\pi}{2}\ln(2) -2\sum_{j=1}^\infty \frac{(-1)^j}{j}\int_0^{\frac{\pi}{4}}\cos(2j \theta) \mathrm d\theta \\&= -\frac{\pi}{2}\ln(2)+\sum_{j=1}^\infty \frac{(-1)^{j+1}}{j^2}\sin \left( \frac{\pi j}{2}\right) \\
&=\Large\boxed{\displaystyle \color{Blue}{\mathbf{G}-\frac{\pi}{2}\ln(2)}}
\end{align*}\]
Euler Sums系列(四)的更多相关文章
- Euler Sums系列(六)
\[\Large\displaystyle \sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}\] \(\Large\mathbf{Solution:}\) Let \ ...
- Euler Sums系列(五)
\[\Large\displaystyle \sum_{n=1}^{\infty} \frac{\widetilde{H_n}}{n^{3}}\] where \(\widetilde{H_n}\) ...
- Euler Sums系列(一)
\[\Large\sum_{n=1}^{\infty} \frac{H_{n}}{2^nn^4}\] \(\Large\mathbf{Solution:}\) Let \[\mathcal{S}=\s ...
- Euler Sums系列(三)
\[\Large\sum_{n=1}^{\infty}\frac{\left(H_{n}^{(2)}\right)^{2}}{n^{2}}=\frac{19}{24}\zeta(6)+\zeta^{2 ...
- Euler Sums系列(二)
\[\Large\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^2}=\frac{21}{16}\zeta(3)\] \(\Large\mathbf{Proof:}\ ...
- 前端构建大法 Gulp 系列 (四):gulp实战
前端构建大法 Gulp 系列 (一):为什么需要前端构建 前端构建大法 Gulp 系列 (二):为什么选择gulp 前端构建大法 Gulp 系列 (三):gulp的4个API 让你成为gulp专家 前 ...
- Netty4.x中文教程系列(四) 对象传输
Netty4.x中文教程系列(四) 对象传输 我们在使用netty的过程中肯定会遇到传输对象的情况,Netty4通过ObjectEncoder和ObjectDecoder来支持. 首先我们定义一个U ...
- S5PV210开发系列四_uCGUI的移植
S5PV210开发系列四 uCGUI的移植 象棋小子 1048272975 GUI(图形用户界面)极大地方便了非专业用户的使用,用户无需记忆大量的命令,取而代之的是能够通过窗体.菜单 ...
- WCF编程系列(四)配置文件
WCF编程系列(四)配置文件 .NET应用程序的配置文件 前述示例中Host项目中的App.config以及Client项目中的App.config称为应用程序配置文件,通过该文件配置可控制程序的 ...
随机推荐
- nmon+python 基于AIX系统数据分析
https://sourceforge.net/projects/pynmongraph/ github :https://github.com/madmaze/pyNmonAnalyzer nmon ...
- 关于video++,jsrun,有道笔记等的感想
这几天一直在思考切入点.想了很多,有关于给初创企业提供社交平台营销的,如公众号,小程序,支付宝的到位,附近等.这些初看起来可行,细想起来有一些根本不完备.如通过微小宝多平台客户端了解最热的内容,在内容 ...
- Iframe 高度自适应,js控制Iframe 高度自适应
Iframe 高度自适应, js控制Iframe 高度自适应, iframe自适应高度 ================================ ©Copyright 蕃薯耀 2019年12 ...
- c语言用raw socket进行抓包
https://www.cnblogs.com/MrYuan/p/5215923.html https://blog.csdn.net/qq_41787205/article/details/8669 ...
- session跨域共享问题解决方案
在讨论 session 跨域共享问题之前,我们首先要了解 session 做了什么,没做什么 1.HTTP是无状态的,也就是说服务器不知道谁访问过他,但是有时间,又需要我们去保留这个状态比如说用户的登 ...
- 读懂timing report
三部分:表头/launch path /capture path 1.表头 1) 工具版本信息:如示例中的18.10-p001,对某个具体项目timing signoff 工具的版本最好保证一致: 操 ...
- python浅析对return的理解
函数外部的代码要想获取函数的执行结果,就可以在函数里面用return语句,把结果返回. return 代表一个函数的终止,如果return 后面带一个print 或者return ,则后面的不执行 ...
- Centos6.10-FastDFS-存储器Http配置
Centos610系列配置 1.准备配置 cd /opt/download/fastdfs-master/confcp http.conf /etc/fdfs/http.confcp mime.typ ...
- 「JSOI2015」非诚勿扰
「JSOI2015」非诚勿扰 传送门 我们首先考虑一名女性选中她列表里第 \(x\) 名男性的概率(假设她列表里共有 \(s\) 名男性): \[ P = p \times (1 - p) ^ {x ...
- 基于bs4库的HTML内容查找方法
一.信息提取实例 提取HTML中所有的URL链接 思路:1)搜索到所有的<a>标签 2)解析<a>标签格式,提取href后的链接内容 >>> import r ...