BERT的通俗理解 预训练模型 微调
1、预训练模型
BERT是一个预训练的模型,那么什么是预训练呢?举例子进行简单的介绍
假设已有A训练集,先用A对网络进行预训练,在A任务上学会网络参数,然后保存以备后用,当来一个新的任务B,采取相同的网络结构,网络参数初始化的时候可以加载A学习好的参数,其他的高层参数随机初始化,之后用B任务的训练数据来训练网络,当加载的参数保持不变时,称为"frozen",当加载的参数随着B任务的训练进行不断的改变,称为“fine-tuning”,即更好地把参数进行调整使得更适合当前的B任务
优点:当任务B的训练数据较少时,很难很好的训练网络,但是获得了A训练的参数,会比仅仅使用B训练的参数更优
Task #1: Masked LM
为了训练双向特征,这里采用了Masked Language Model的预训练方法,随机mask句子中的部分token,然后训练模型来预测被去掉的token。
具体操作是:
随机mask语料中15%的token,然后将masked token 位置输出的final hidden vectors送入softmax,来预测masked token。
这里也有一个小trick,如果都用标记[MASK]代替token会影响模型,所以在随机mask的时候采用以下策略:
1)80%的单词用[MASK]token来代替
my dog is hairy → my dog is [MASK]
2)10%单词用任意的词来进行代替
my dog is hairy → my dog is apple
3)10%单词不变
my dog is hairy → my dog is hairy
Task 2#: Next Sentence Prediction
为了让模型捕捉两个句子的联系,这里增加了Next Sentence Prediction的预训练方法,即给出两个句子A和B,B有一半的可能性是A的下一句话,训练模型来预测B是不是A的下一句话
Input = [CLS] the man went to [MASK] store [SEP]
penguin [MASK] are flight ## less birds [SEP]
Label = NotNext
he bought a gallon [MASK] milk [SEP]
Label = IsNext
Input = [CLS] the man [MASK] to the store [SEP]
训练模型,使模型具备理解长序列上下文的联系的能力
2、BERT模型
BERT:全称是Bidirectional Encoder Representation from Transformers,即双向Transformer的Encoder,BERT的模型架构基于多层双向转换解码,因为decoder是不能获要预测的信息的,模型的主要创新点都在pre-traing方法上,即用了Masked LM和Next Sentence Prediction两种方法分别捕捉词语和句子级别的representation
其中“双向”表示模型在处理某一个词时,它能同时利用前面的词和后面的词两部分信息,这种“双向”的来源在于BERT与传统语言模型不同,它不是在给你大牛股所有前面词的条件下预测最可能的当前词,而是随机遮掩一些词,并利用所有没被遮掩的词进行预测
下图展示了三种预训练模型,其中 BERT 和 ELMo 都使用双向信息,OpenAI GPT 使用单向信息
3、BERT的输入部分
bert的输入部分是个线性序列,两个句子通过分隔符分割,最前面和最后增加两个标识符号。每个单词有三个embedding:位置信息embedding,这是因为NLP中单词顺序是很重要的特征,需要在这里对位置信息进行编码;单词embedding,这个就是我们之前一直提到的单词embedding;第三个是句子embedding,因为前面提到训练数据都是由两个句子构成的,那么每个句子有个句子整体的embedding项对应给每个单词。把单词对应的三个embedding叠加,就形成了Bert的输入。
如上图所示,输入有A句[my dog is cute]和B句[he likes playing]这两个自然句,我们首先需要将每个单词及特殊符号都转化为词嵌入向量,因为神经网络只能进行数值计算。其中特殊符[SEP]是用于分割两个句子的符号,前面半句会加上分割码A,后半句会加上分割码B
因为要建模句子之间的关系,BERT 有一个任务是预测 B 句是不是 A 句后面的一句话,而这个分类任务会借助 A/B 句最前面的特殊符 [CLS] 实现,该特殊符可以视为汇集了整个输入序列的表征。
最后的位置编码是 Transformer 架构本身决定的,因为基于完全注意力的方法并不能像 CNN 或 RNN 那样编码词与词之间的位置关系,但是正因为这种属性才能无视距离长短建模两个词之间的关系。因此为了令 Transformer 感知词与词之间的位置关系,我们需要使用位置编码给每个词加上位置信息。
总结一下:
(1)token embeddings表示的是词向量,第一个单词是CLS,可以用于之后的分类任务
(2)segment embeddings用来区别两种句子,因为预训练不光做LM还要做以两个句子为输入的分类任务
(3)position embeddings表示位置信息
4、NLP的四大类任务
(1)序列标注:分词、实体识别、语义标注……
(2)分类任务:文本分类、情感计算……
(3)句子关系判断:entailment、QA、自然语言推理
(4)生成式任务:机器翻译、文本摘
上图给出示例,对于句子关系类任务,很简单,和GPT类似,加上一个起始和终结符号,句子之间加个分隔符即可。对于输出来说,把第一个起始符号对应的Transformer最后一层位置上面串接一个softmax分类层即可。对于分类问题,与GPT一样,只需要增加起始和终结符号,输出部分和句子关系判断任务类似改造;对于序列标注问题,输入部分和单句分类是一样的,只需要输出部分Transformer最后一层每个单词对应位置都进行分类即可。从这里可以看出,上面列出的NLP四大任务里面,除了生成类任务外,Bert其它都覆盖到了,而且改造起来很简单直观。(https://zhuanlan.zhihu.com/p/49271699)
5、模型的评价
(1)优点
BERT是截止至2018年10月的最新的的state of the art模型,通过预训练和精调可以解决11项NLP的任务。使用的是Transformer,相对于rnn而言更加高效、能捕捉更长距离的依赖。与之前的预训练模型相比,它捕捉到的是真正意义上的bidirectional context信息
(2)缺点
作者在文中主要提到的就是MLM预训练时的mask问题:
1)[MASK]标记在实际预测中不会出现,训练时用过多[MASK]影响模型表现;
2)每个batch只有15%的token被预测,所以BERT收敛得比left-to-right模型要慢(它们会预测每个token)
6、GLUE语料集的介绍
实验数据以及对应的NLP任务
MNLI:蕴含关系推断
QQP:问题对是否等价
QNLI:句子是都回答问句
SST-2:情感分析
CoLA:句子语言性判断
STS-B:语义相似
MRPC:句子对是都语义等价
RTE:蕴含关系推断
WNLI:蕴含关系推断
7、git网址https://github.com/google-research/bert
关于bert知识干货的汇总https://zhuanlan.zhihu.com/p/50717786
本文转自https://blog.csdn.net/yangfengling1023/article/details/84025313
---------------------
作者:小白的进阶
来源:CSDN
原文:https://blog.csdn.net/laobai1015/article/details/87937528
版权声明:本文为博主原创文章,转载请附上博文链接!
BERT的通俗理解 预训练模型 微调的更多相关文章
- 使用BERT预训练模型+微调进行文本分类
本文记录使用BERT预训练模型,修改最顶层softmax层,微调几个epoch,进行文本分类任务. BERT源码 首先BERT源码来自谷歌官方tensorflow版:https://github.co ...
- 文本分类实战(十)—— BERT 预训练模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 【中文版 | 论文原文】BERT:语言理解的深度双向变换器预训练
BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 谷歌AI语言组论文<BERT:语言 ...
- 【转载】最强NLP预训练模型!谷歌BERT横扫11项NLP任务记录
本文介绍了一种新的语言表征模型 BERT--来自 Transformer 的双向编码器表征.与最近的语言表征模型不同,BERT 旨在基于所有层的左.右语境来预训练深度双向表征.BERT 是首个在大批句 ...
- BERT预训练模型的演进过程!(附代码)
1. 什么是BERT BERT的全称是Bidirectional Encoder Representation from Transformers,是Google2018年提出的预训练模型,即双向Tr ...
- Pytorch——BERT 预训练模型及文本分类
BERT 预训练模型及文本分类 介绍 如果你关注自然语言处理技术的发展,那你一定听说过 BERT,它的诞生对自然语言处理领域具有着里程碑式的意义.本次试验将介绍 BERT 的模型结构,以及将其应用于文 ...
- CNN基础三:预训练模型的微调
上一节中,我们利用了预训练的VGG网络卷积基,来简单的提取了图像的特征,并用这些特征作为输入,训练了一个小分类器. 这种方法好处在于简单粗暴,特征提取部分的卷积基不需要训练.但缺点在于,一是别人的模型 ...
- NLP与深度学习(五)BERT预训练模型
1. BERT简介 Transformer架构的出现,是NLP界的一个重要的里程碑.它激发了很多基于此架构的模型,其中一个非常重要的模型就是BERT. BERT的全称是Bidirectional En ...
- bert 预训练模型路径
google的bert预训练模型: BERT-Large, Uncased (Whole Word Masking): 24-layer, 1024-hidden, 16-heads, 340M pa ...
随机推荐
- (二)SpringBoot功能
web开发 spring boot web开发非常的简单,其中包括常用的json输出.filters.property.log等 json 接口开发 在以前的spring 开发的时候需要我们提供jso ...
- Laravel 虚拟开发环境 Homestead
简介 Laravel 致力于让你在 PHP 开发过程中更加轻松愉快,这其中也包括本地开发环境的搭建. Vagrant 提供了一种简单.优雅的方式来管理和配置虚拟机. Laravel Homestead ...
- SPSS详细操作:生存资料的Cox回归分析
SPSS详细操作:生存资料的Cox回归分析 一.问题与数据 某研究者拟观察某新药的抗肿瘤效果,将70名肺癌患者随机分为两组,分别采用该新药和常规药物进行治疗,观察两组肺癌患者的生存情况,共随访2年.研 ...
- idea导入gradle项目后,找不到右边gradle窗口
解决方案:关闭当前项目idea,随便打开个其他的项目 选择你刚刚的gradle项目 一定要选择你的gradle文件,然后OK就行了..剩下的按照指示打开就会显示gradle右边窗了 原文弟子:http ...
- Framework7 下拉刷新
html结构 <div class="page"> <!-- Page content should have additional "pull-to- ...
- 利用 JavaScript SDK 部署网页版“Facebook 登录”
facebook开发者平台https://developers.facebook.com/ 利用 JavaScript SDK 部署网页版“Facebook 登录” 通过采用 Javascript 版 ...
- LayUI+Echart实现图表
1.首先 定义一个容器存放图表 需要指定这个容器的大小 <div class="layui-card"> <div class="layui-card ...
- nodeJs学习-14 mysql数据库学习、Navicat管理工具
数据库: MySQL 免费.性能非常不错 缺点:集群.容灾稍微弱一点 Oracle 收费.大型应用.金融级.性能非常不错.集群.容灾非常强 缺点:贵 mySQL安装教程--nodeJsz智能社视频 ...
- TZOJ 4359: Partition the beans (二分)
描述 Given an N x N square grid (2 <= N <= 15) and each grid has some beans in it. You want to w ...
- 生成主键ID,唯一键id,分布式ID生成器雪花算法代码实现
工具类: package com.ihrm.common.utils; import java.lang.management.ManagementFactory; import java.net. ...