题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=1808

Problem Description
Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain total number of sweets on that day, no matter how many children call on him, so it may happen that a child will get nothing if it is too late. To avoid conflicts, the children have decided they will put all sweets together and then divide them evenly among themselves. From last year's experience of Halloween they know how many sweets they get from each neighbour. Since they care more about justice than about the number of sweets they get, they want to select a subset of the neighbours to visit, so that in sharing every child receives the same number of sweets. They will not be satisfied if they have any sweets left which cannot be divided.

Your job is to help the children and present a solution.

 
Input
The input contains several test cases. 
The first line of each test case contains two integers c and n (1 ≤ c ≤ n ≤ 100000), the number of children and the number of neighbours, respectively. The next line contains n space separated integers a1 , ... , an (1 ≤ ai ≤ 100000 ), where ai represents the number of sweets the children get if they visit neighbour i.

The last test case is followed by two zeros.

 
Output
For each test case output one line with the indices of the neighbours the children should select (here, index i corresponds to neighbour i who gives a total number of ai sweets). If there is no solution where each child gets at least one sweet, print "no sweets" instead. Note that if there are several solutions where each child gets at least one sweet, you may print any of them.
 
Sample Input
4 5
1 2 3 7 5
3 6
7 11 2 5 13 17
0 0
 
Sample Output
3 5
2 3 4
 
启发题解:http://blog.csdn.net/liwen_7/article/details/8047273
抽屉原理:http://baike.baidu.com/link?url=qugmIxXpH8G9HJzDYsKlnWOtkPRvzgvLZ_Qjfi7bKG5gyorL8C5Wh5f3dJsp_PCU4MQlBEF7o7KH9URyhOBMX9yYu6_aYR4xG4Wp_Y4ktZca3WODwQ2alV-SDRVJJ-ES
 

 题意: 已知有n户人,每户会给小孩们一定数量的糖果(会给的数量假设小孩都已知),求小孩挑选哪几户人家,所得糖果总数能够使每个小孩得到相同数量的糖果,即是小孩数目的倍数?

 思路: 设a1、a2……am是正整数的序列,则至少存在整数k和l,(1<=k<l<=m),使得和a(k+1) + a(k+2) + ... ... +al是m的倍数。

 证明: x%m的余数有(m-1)中可能,即设有(m-1)个鸽巢,设sn代表(a1+a2+...+an)则m个sn产生m个余数,根据鸽巢原理,一定至少有两个s的余数相等,将这连个s想减,中间a(k+1) + a(k+2) + ... ... +al一定是m的倍数。

 
 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<string.h>
#include<cmath>
using namespace std;
#define N 100005 struct node
{
int num,r;
}k[N]; bool cmp(node a,node b)
{
if(a.r==b.r)
return a.num<b.num;
return a.r<b.r;
} int main()
{
long long c,a,sum;
int n;
bool flag;
while(~scanf("%lld%d",&c,&n))
{
if(c==&&n==)
break;
flag=false;
sum=;
k[].num=;
for(int i=;i<=n;i++)
{
scanf("%lld",&a);
sum+=a;
k[i].r=sum%c;
k[i].num=i;
if(k[i].r==&&flag==false)
{
flag=true;
printf("");
for(int j=;j<=i;j++)
printf(" %d",j);
printf("\n");
}
}
if(!flag)
{
sort(k+,k++n,cmp);
for(int i=;i<=n;i++)
{
if(k[i].r==k[i-].r)
{
printf("%d",k[i-].num+);
for(int j=k[i-].num+;j<=k[i].num;j++)
printf(" %d",j);
printf("\n");
flag=true;
break;
}
}
}
if(!flag)
printf("no sweets\n");
}
return ;
}

HDU 1808 Halloween treats(抽屉原理)的更多相关文章

  1. uva 11237 - Halloween treats(抽屉原理)

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011328934/article/details/37612503 题目链接:uva 11237 ...

  2. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Every year there is the same problem at Halloween: Each neighbour is only willing t ...

  3. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  4. HDU 1808 Halloween treats

    Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain ...

  5. UVA 11237 - Halloween treats(鸽笼原理)

    11237 - Halloween treats option=com_onlinejudge&Itemid=8&page=show_problem&category=516& ...

  6. HDU 5776 sum(抽屉原理)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=5776 Problem Description Given a sequence, you're ask ...

  7. hdu 1205 吃糖果 (抽屉原理<鸽笼原理>)

    吃糖果Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submissi ...

  8. Halloween treats HDU 1808 鸽巢(抽屉)原理

    Halloween treats Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  9. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6631   Accepted: 2448 ...

随机推荐

  1. 【Java】【8】StringUtils中isNotEmpty和isNotBlank的区别

    前言: 1,StringUtils.isNotEmpty(str)和StringUtils.isNotBlank(str)都是用来做非空判断的 2,通常用isNotBlank 3,import org ...

  2. yarn基本命令

    参考文章:https://blog.csdn.net/mjzhang1993/article/details/70092902 1.安装 windows: 下载地址 mac: brew install ...

  3. ABAP游标

    DATA: BEGIN OF count_line, carrid TYPE spfli-carrid, count TYPE i, END OF count_line, spfli_tab TYPE ...

  4. [luogu P2054] [AHOI2005]洗牌

    [luogu P2054] [AHOI2005]洗牌 题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学 ...

  5. 深入浅出php socket编程

    对TCP/IP.UDP.Socket编程这些词你不会很陌生吧?随着网络技术的发展,这些词充斥着我们的耳朵.那么我想问: 1.什么是TCP/IP.UDP?2.Socket在哪里呢?3.Socket是什么 ...

  6. 剑指 offer 面试题31 连续子数组的最大和(动态规划)

    求连续子数组的最大和 题目描述 给定一个整形数组,有正数也有负数,数组中连续一个或多个组成一个子数组,求所有子数组的和的最大值,要求时间复杂度为O(n); 测试用例 给定数组 {1,-2,3,10,- ...

  7. 在springboot中用redis实现消息队列

    环境依赖 创建一个新的springboot工程,在其pom文件,加入spring-boot-starter-data-redis依赖: <dependency> <groupId&g ...

  8. Win10系列:UWP界面布局基础5

    (2)编写后台代码访问资源 下面通过一个例子来演示如何编写后台代码引用资源.新建一个Windows应用商店的空白应用程序项目,将其命名为AccessResourceApplication,打开项目下的 ...

  9. 尚学堂java答案解析 第一章

    本答案为本人个人编辑,仅供参考,如果读者发现,请私信本人或在下方评论,提醒本人修改 一.选择题: 1.C 解析:java为了安全,中并没有引入C语言的指针概念. 2.AD 解析:B:Java先通过ja ...

  10. 【原创】<Debug> not positioned on a valid record

    [Problem] QSqlQuery::value: not positioned on a valid record QSqlQuery :: value:未定位在有效记录上 [Solution] ...