题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=1808

Problem Description
Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain total number of sweets on that day, no matter how many children call on him, so it may happen that a child will get nothing if it is too late. To avoid conflicts, the children have decided they will put all sweets together and then divide them evenly among themselves. From last year's experience of Halloween they know how many sweets they get from each neighbour. Since they care more about justice than about the number of sweets they get, they want to select a subset of the neighbours to visit, so that in sharing every child receives the same number of sweets. They will not be satisfied if they have any sweets left which cannot be divided.

Your job is to help the children and present a solution.

 
Input
The input contains several test cases. 
The first line of each test case contains two integers c and n (1 ≤ c ≤ n ≤ 100000), the number of children and the number of neighbours, respectively. The next line contains n space separated integers a1 , ... , an (1 ≤ ai ≤ 100000 ), where ai represents the number of sweets the children get if they visit neighbour i.

The last test case is followed by two zeros.

 
Output
For each test case output one line with the indices of the neighbours the children should select (here, index i corresponds to neighbour i who gives a total number of ai sweets). If there is no solution where each child gets at least one sweet, print "no sweets" instead. Note that if there are several solutions where each child gets at least one sweet, you may print any of them.
 
Sample Input
4 5
1 2 3 7 5
3 6
7 11 2 5 13 17
0 0
 
Sample Output
3 5
2 3 4
 
启发题解:http://blog.csdn.net/liwen_7/article/details/8047273
抽屉原理:http://baike.baidu.com/link?url=qugmIxXpH8G9HJzDYsKlnWOtkPRvzgvLZ_Qjfi7bKG5gyorL8C5Wh5f3dJsp_PCU4MQlBEF7o7KH9URyhOBMX9yYu6_aYR4xG4Wp_Y4ktZca3WODwQ2alV-SDRVJJ-ES
 

 题意: 已知有n户人,每户会给小孩们一定数量的糖果(会给的数量假设小孩都已知),求小孩挑选哪几户人家,所得糖果总数能够使每个小孩得到相同数量的糖果,即是小孩数目的倍数?

 思路: 设a1、a2……am是正整数的序列,则至少存在整数k和l,(1<=k<l<=m),使得和a(k+1) + a(k+2) + ... ... +al是m的倍数。

 证明: x%m的余数有(m-1)中可能,即设有(m-1)个鸽巢,设sn代表(a1+a2+...+an)则m个sn产生m个余数,根据鸽巢原理,一定至少有两个s的余数相等,将这连个s想减,中间a(k+1) + a(k+2) + ... ... +al一定是m的倍数。

 
 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<string.h>
#include<cmath>
using namespace std;
#define N 100005 struct node
{
int num,r;
}k[N]; bool cmp(node a,node b)
{
if(a.r==b.r)
return a.num<b.num;
return a.r<b.r;
} int main()
{
long long c,a,sum;
int n;
bool flag;
while(~scanf("%lld%d",&c,&n))
{
if(c==&&n==)
break;
flag=false;
sum=;
k[].num=;
for(int i=;i<=n;i++)
{
scanf("%lld",&a);
sum+=a;
k[i].r=sum%c;
k[i].num=i;
if(k[i].r==&&flag==false)
{
flag=true;
printf("");
for(int j=;j<=i;j++)
printf(" %d",j);
printf("\n");
}
}
if(!flag)
{
sort(k+,k++n,cmp);
for(int i=;i<=n;i++)
{
if(k[i].r==k[i-].r)
{
printf("%d",k[i-].num+);
for(int j=k[i-].num+;j<=k[i].num;j++)
printf(" %d",j);
printf("\n");
flag=true;
break;
}
}
}
if(!flag)
printf("no sweets\n");
}
return ;
}

HDU 1808 Halloween treats(抽屉原理)的更多相关文章

  1. uva 11237 - Halloween treats(抽屉原理)

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011328934/article/details/37612503 题目链接:uva 11237 ...

  2. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Every year there is the same problem at Halloween: Each neighbour is only willing t ...

  3. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  4. HDU 1808 Halloween treats

    Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain ...

  5. UVA 11237 - Halloween treats(鸽笼原理)

    11237 - Halloween treats option=com_onlinejudge&Itemid=8&page=show_problem&category=516& ...

  6. HDU 5776 sum(抽屉原理)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=5776 Problem Description Given a sequence, you're ask ...

  7. hdu 1205 吃糖果 (抽屉原理<鸽笼原理>)

    吃糖果Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submissi ...

  8. Halloween treats HDU 1808 鸽巢(抽屉)原理

    Halloween treats Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  9. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6631   Accepted: 2448 ...

随机推荐

  1. HashTable Queue Stack SortedList BitArray

    HashTable 由于是非泛型集合,因此存储进去的都是object类型,不管是键还是值. Hashtable不允许排序 key不允许重复 键不允许为null Queue和Queue<T> ...

  2. ECharts 报表事件联动系列四:柱状图,折线图,饼状图实现联动

    代码如下: <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" c ...

  3. Linux下zoopkeeper的安装和启动

    Linux下zoopkeeper的安装和启动 1.什么是zookeeper ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoo ...

  4. daal utils printNumericTable

    #=============================================================================== # Copyright 2014-20 ...

  5. Find a way out of the ClassLoader maze

    June 6, 2003 Q: When should I use Thread.getContextClassLoader() ? A: Although not frequently asked, ...

  6. datatime 模块

    import datetime # 这个是一个包 里面包含 对时间的处理 对日期的处理datetime.date # 日期相关datetime.time # 时间相关 # 获取当前详细时间print( ...

  7. bzoj5016

    题解: 吧询问变成前缀形式 然后莫队 代码: #include<bits/stdc++.h> ; using namespace std; ]; ,L=,R=; ,Ans[N]; bool ...

  8. day11 第一类对象 闭包 迭代器

    今日主要内容: 1 . 第一类对象 -->函数名--> 变量名 2. 闭包 -->函数的嵌套 3. 迭代器 --> 固定的思想 for 循环 第一类对象  : 函数对象介意向变 ...

  9. 【转载】Maven中的BOM概念

    1.概述 1.1.什么是 BOM? BOM stands for Bill Of Materials. A BOM is a special kind of POM that is used to c ...

  10. 使用RxSwift 实现登录页面的条件绑定

    我们在使用MVC建构进行开发时,对登录页面用户名密码等进行的处理一般是这样的,点击登录按钮判断用户框以及密码框输入的合法性,用一堆if真是屎一般!或者用textfield的代理来进行响应其实也是屎一般 ...