Hard!

题目描述:

给定一个非负整数数组,你最初位于数组的第一个位置。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

你的目标是使用最少的跳跃次数到达数组的最后一个位置。

示例:

输入: [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2
  从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。

说明:

假设你总是可以到达数组的最后一个位置。

解题思路:

这题是之前那道Jump Game 跳跃游戏 的延伸,那题是问能不能到达最后一个数字,而此题只让我们求到达最后一个位置的最少跳跃数,貌似是默认一定能到达最后位置的? 此题的核心方法是利用贪婪算法Greedy的思想来解,想想为什么呢? 为了较快的跳到末尾,我们想知道每一步能跳的范围,这里贪婪并不是要在能跳的范围中选跳力最远的那个位置,因为这样选下来不一定是最优解,这么一说感觉又有点不像贪婪算法了。我们这里贪的是一个能到达的最远范围,我们遍历当前跳跃能到的所有位置,然后根据该位置上的跳力来预测下一步能跳到的最远距离,贪出一个最远的范围,一旦当这个范围到达末尾时,当前所用的步数一定是最小步数。

我们需要两个变量cur和pre分别来保存当前的能到达的最远位置和之前能到达的最远位置,只要cur未达到最后一个位置则循环继续,pre先赋值为cur的值,表示上一次循环后能到达的最远位置,如果当前位置i小于等于pre,说明还是在上一跳能到达的范围内,我们根据当前位置加跳力来更新cur,更新cur的方法是比较当前的cur和i + A[i]之中的较大值,如果题目中未说明是否能到达末尾,我们还可以判断此时pre和cur是否相等,如果相等说明cur没有更新,即无法到达末尾位置,返回-1。

C++解法一:

 class Solution {
public:
int jump(vector<int>& nums) {
int res = , n = nums.size(), i = , cur = ;
while (cur < n - ) {
++res;
int pre = cur;
for (; i <= pre; ++i) {
cur = max(cur, i + nums[i]);
}
if (pre == cur) return -; // May not need this
}
return res;
}
};

还有一种写法,跟上面那解法略有不同,但是本质的思想还是一样的,关于此解法的详细分析可参见http://www.cnblogs.com/lichen782/p/leetcode_Jump_Game_II.html。这里cur是当前能到达的最远位置,last是上一步能到达的最远位置,我们遍历数组,首先用i + nums[i]更新cur,这个在上面解法中讲过了,然后判断如果当前位置到达了last,即上一步能到达的最远位置,说明需要再跳一次了,我们将last赋值为cur,并且步数res自增1,这里我们小优化一下,判断如果cur到达末尾了,直接break掉即可。

C++解法二:

 class Solution {
public:
int jump(vector<int>& nums) {
int res = , n = nums.size(), last = , cur = ;
for (int i = ; i < n - ; ++i) {
cur = max(cur, i + nums[i]);
if (i == last) {
last = cur;
++res;
if (cur >= n - ) break;
}
}
return res;
}
};

要理解这个算法,首先明白,这个题只要我们求跳数,怎么跳,最后距离是多少,都没让求的。

大牛这个算法的思想主要是,扫描数组(废话。。。),以确定当前最远能覆盖的节点,放入curr。然后继续扫描,直到当前的路程超过了上一次算出的覆盖范围,那么更新覆盖范围,同时更新条数,因为我们是经过了多一跳才能继续前进的。

形象地说,这个是在争取每跳最远的greedy。举个栗子。

比如就是我们题目中的[2,3,1,1,4]。初始状态是这样的:cur表示最远能覆盖到的地方,用红色表示。last表示已经覆盖的地方,用箭头表示。它们都指在第一个元素上。

接下来,第一元素告诉cur,最远咱可以走2步。于是:

下一循环中,i指向1(图中的元素3),发现,哦,i小于last能到的范围,于是更新last(相当于说,进入了新的势力范围),步数ret加1.同时要更新cur。因为最远距离发现了。

接下来,i继续前进,发现i在当前的势力范围内,无需更新last和步数ret。更新cur。

i继续前进,接下来发现超过当前势力范围,更新last和步数。cur已然最大了。

最后,i到最后一个元素。依然在势力范围内,遍历完成,返回ret。

这道题让我们明白一个道理:

不要做无必要的计算。

对了,有同学会问,那为啥要用last,直接用curr跳不就行了。直接用curr跳那每次都是跳最远的,但是最优路径不不一定是这样。该算法时间复杂度为O(n)。

C++解法三:

 /*
* We use "last" to keep track of the maximum distance that has been reached
* by using the minimum steps "ret", whereas "curr" is the maximum distance
* that can be reached by using "ret+1" steps. Thus,
* curr = max(i+A[i]) where 0 <= i <= last.
*/
class Solution {
public:
int jump(int A[], int n) {
int ret = ;
int last = ;
int curr = ;
for (int i = ; i < n; ++i) {
if (i > last) {
last = curr;
++ret;
}
curr = max(curr, i+A[i]);
} return ret;
}
};

LeetCode(45): 跳跃游戏 II的更多相关文章

  1. LeetCode 45. 跳跃游戏 II | Python

    45. 跳跃游戏 II 题目来源:https://leetcode-cn.com/problems/jump-game-ii 题目 给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素 ...

  2. Java实现 LeetCode 45 跳跃游戏 II(二)

    45. 跳跃游戏 II 给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 你的目标是使用最少的跳跃次数到达数组的最后一个位置. 示例: 输入: [ ...

  3. [leetcode] 45. 跳跃游戏 II(Java)(动态规划)

    45. 跳跃游戏 II 动态规划 此题可以倒着想. 看示例: [2,3,1,1,4] 我们从后往前推,对于第4个数1,跳一次 对于第3个数1,显然只能跳到第4个数上,那么从第3个数开始跳到最后需要两次 ...

  4. 力扣Leetcode 45. 跳跃游戏 II - 贪心思想

    这题是 55.跳跃游戏的升级版 力扣Leetcode 55. 跳跃游戏 给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 你的目标是使用最少的跳跃 ...

  5. leetcode 45. 跳跃游戏 II JAVA

    题目: 给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 你的目标是使用最少的跳跃次数到达数组的最后一个位置. 示例: 输入: [2,3,1,1, ...

  6. [LeetCode] 45. 跳跃游戏 II

    题目链接 : https://leetcode-cn.com/problems/jump-game-ii/ 题目描述: 给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位 ...

  7. leetcode 55. 跳跃游戏 及 45. 跳跃游戏 II

    55. 跳跃游戏 问题描述 给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 判断你是否能够到达最后一个位置. 示例 1: 输入: [2,3,1, ...

  8. LeetCode 45跳跃游戏&46全排列

    原创公众号:bigsai,回复进群加入力扣打卡群. 昨日打卡:LeetCode 42字符串相乘&43通配符匹配 跳跃游戏 题目描述: 给定一个非负整数数组,你最初位于数组的第一个位置. 数组中 ...

  9. 【LeetCode】跳跃游戏II

    [问题]给定一个非负整数数组,你最初位于数组的第一个位置.数组中的每个元素代表你在该位置可以跳跃的最大长度.你的目标是使用最少的跳跃次数到达数组的最后一个位置. 示例: 输入: [,,,,] 输出: ...

  10. 45. 跳跃游戏 II

    给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 你的目标是使用最少的跳跃次数到达数组的最后一个位置. 示例: 输入: [2,3,1,1,4]输出 ...

随机推荐

  1. CentOS6.7下Ansible部署

    Ansible是一种集成IT系统的配置管理, 应用部署, 执行特定任务的开源平台. 它基于Python语言实现, 部署只需在主控端部署Ansible环境, 被控端无需安装代理工具, 只需打开SSH, ...

  2. saltstack 常用模块

    cp模块 功能:实现远程文件.目录的复制,以及下载URL文件等操作 使用cp模块配置管理之前,要首先指定saltstack所有状态文件的根目录,在master上做如下操作: 指定根目录(确定指定的目录 ...

  3. nginx 301 302跳转配置总结

    首先看简单的代码示例,关于nginx 301 302跳转的. 301跳转设置: server { listen 80; server_name 123.com; rewrite ^/(.*) http ...

  4. python---session(最终版)__setitem__和__getitem__方法

    一般来说对于其他语言session值一般获取方法为session['name'],赋值使用session['name']=val 对于python类中含有一些魔术方法__setitem__,__get ...

  5. 关于Springboot打包错误的问题 | Failed to execute goal org.springframework.boot:spring-boot-maven-plugin

    最近在使用spring-boot整合多模块,但是在父pom中打包maven install时总会报错:Failed to execute goal org.springframework.boot:s ...

  6. SparkRDD简介/常用算子/依赖/缓存

    SparkRDD简介/常用算子/依赖/缓存 RDD简介 RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区. ...

  7. html 高亮显示表格当前行【转】

    html在线模拟网:http://www.w3school.com.cn/tiy/t.asp?f=html_basic 高亮显示表格当前行 <html> <head> < ...

  8. Linux 命令详解(二)awk 命令

    AWK是一种处理文本文件的语言,是一个强大的文本分析工具.之所以叫AWK是因为其取了三位创始人 Alfred Aho,Peter Weinberger, 和 Brian Kernighan 的Fami ...

  9. Spark2.1.0安装

    1.解压安装spark tar zxf spark-2.1.O-bin-2.6.0-CDH5.10.0.tgz 2.修改配置文件 vim /etc/profile export SPARK_HOME= ...

  10. ECharts(中国地图)的使用 及 非空 tooltip formatter 验证

    中国地图使用频率很高下载文件:        echarts.min.js网址:               http://echarts.baidu.com/download.html点击:     ...