【模板/经典题型】FWT
FWT在三种位运算下都满足FWT(a×b)=FWT(a)*FWT(b)
其中or卷积和and卷积还可以通过FMT实现(本质上就是个高维前缀和)
#include<bits/stdc++.h>
#define N 1100000
#define eps 1e-7
#define inf 1e9+7
#define db double
#define ll long long
#define ldb long double
using namespace std;
inline int read()
{
char ch=0;
int x=0,flag=1;
while(!isdigit(ch)){ch=getchar();if(ch=='-')flag=-1;}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*flag;
}
const ll mo=998244353;
int ksm(int x,int k)
{
int ans=1;
while(k)
{
if(k&1)ans=1ll*ans*x%mo;
k>>=1;x=1ll*x*x%mo;
}
return ans;
}
void fwt_or(int *f,int n,int flag)
{
for(int k=2,kk=1;k<=(1<<n);k<<=1,kk<<=1)
for(int i=0;i<(1<<n);i+=k)
for(int j=0;j<kk;j++)
f[i+j+kk]=(f[i+j+kk]+flag*f[i+j])%mo;
}
void fwt_and(int *f,int n,int flag)
{
for(int k=2,kk=1;k<=(1<<n);k<<=1,kk<<=1)
for(int i=0;i<(1<<n);i+=k)
for(int j=0;j<kk;j++)
f[i+j]=(f[i+j]+flag*f[i+j+kk])%mo;
}
void fwt_xor(int *f,int n,int flag)
{
for(int k=2,kk=1;k<=(1<<n);k<<=1,kk<<=1)
for(int i=0;i<(1<<n);i+=k)
for(int j=0;j<kk;j++)
{
int t=f[i+j+kk];
f[i+j+kk]=(f[i+j]-t+mo)%mo;
f[i+j]=(f[i+j]+t)%mo;
}
if(flag==-1)
{
int inv=ksm(1<<n,mo-2);
for(int i=0;i<(1<<n);i++)f[i]=1ll*f[i]*inv%mo;
}
}
int a[N],b[N];
void Or(int n)
{
fwt_or(a,n,+1);fwt_or(b,n,+1);
for(int i=0;i<(1<<n);i++)a[i]=1ll*a[i]*b[i]%mo;
fwt_or(a,n,-1);
}
void And(int n)
{
fwt_and(a,n,+1);fwt_and(b,n,+1);
for(int i=0;i<(1<<n);i++)a[i]=1ll*a[i]*b[i]%mo;
fwt_and(a,n,-1);
}
void Xor(int n)
{
fwt_xor(a,n,+1);fwt_xor(b,n,+1);
for(int i=0;i<(1<<n);i++)a[i]=1ll*a[i]*b[i]%mo;
fwt_xor(a,n,-1);
}
int A[N],B[N];
int main()
{
int n=read();
for(int i=0;i<(1<<n);i++)A[i]=read();
for(int i=0;i<(1<<n);i++)B[i]=read();
for(int i=0;i<(1<<n);i++)a[i]=A[i],b[i]=B[i];
Or(n);for(int i=0;i<(1<<n);i++)printf("%lld ",(a[i]%mo+mo)%mo);printf("\n");
for(int i=0;i<(1<<n);i++)a[i]=A[i],b[i]=B[i];
And(n);for(int i=0;i<(1<<n);i++)printf("%lld ",(a[i]%mo+mo)%mo);printf("\n");
for(int i=0;i<(1<<n);i++)a[i]=A[i],b[i]=B[i];
Xor(n);for(int i=0;i<(1<<n);i++)printf("%lld ",(a[i]%mo+mo)%mo);printf("\n");
return 0;
}
【模板/经典题型】FWT的更多相关文章
- 【模板/经典题型】树上第k大
直接对树dfs一发,对每个节点建出主席树. 查询的时候主席树上二分,四个参数x+y-lca(x,y)-fa[lca(x,y)]. 如果要求支持动态加边的话,只需要一个启发式合并即可,每次暴力重构主席树 ...
- 【模板/经典题型】min-max容斥
一定注意容斥的时候-1的系数多加了1. 然后一种很常见的min-max容斥的策略就是以每个元素的出现时间作为权值. 最后一个出现的时间即为max,也就等价于全集出现的时间.
- 【模板/经典题型】带有直线限制的NE Latice Path计数
平移一下,变成不能接触y=x+1. 注意下面的操作(重点) 做点p=(n,m)关于这条直线的对称点q=(m-1,n+1). ans=f(p)-f(q). 其中f(x)为从(0,0)到点x的方案数.
- 针对JS经典题型对全局变量及局部变量的理解浅谈
第一次写博,还蛮激动... 看到了三题经典题型,就我目前的认识对此题进行总结.如有错误,敬请指正 首先,我们先明确一下JS引擎的工作步骤: js引擎工作分为两步: 1.将这个js中的变量和函数声明保存 ...
- Java数据结构和算法(三):常用排序算法与经典题型
常用的八种排序算法 1.直接插入排序 我们经常会到这样一类排序问题:把新的数据插入到已经排好的数据列中.将第一个数和第二个数排序,然后构成一个有序序列将第三个数插入进去,构成一个新的有序序列.对第四个 ...
- 洛谷.4717.[模板]快速沃尔什变换(FWT)
题目链接 https://www.mina.moe/archives/7598 //285ms 3.53MB #include <cstdio> #include <cctype&g ...
- POJ:1094-Sorting It All Out(拓扑排序经典题型)
Sorting It All Out Time Limit: 1000MS Memory Limit: 10000K Description An ascending sorted sequence ...
- poj 3685 Matrix 二分套二分 经典题型
Matrix Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 5724 Accepted: 1606 Descriptio ...
- Javascript小白经典题型(一)
1. 输出是什么? function sayHi() { console.log(name) console.log(age) var name = 'Lydia' let age = 21 } sa ...
随机推荐
- <OFFER15> 15_NumberOf1InBinary
// 面试题15:二进制中1的个数 // 题目:请实现一个函数,输入一个整数,输出该数二进制表示中1的个数.例如 // 把9表示成二进制是1001,有2位是1.因此如果输入9,该函数输出2. #inc ...
- (转)开源项目miaosha(下)
石墨文档:https://shimo.im/docs/2XlwliBQAYsKCHbq/ (二期)20.开源秒杀项目miaosha解读(下) [课程20]jmeter.xmind81.5KB [课程2 ...
- LOJ121 「离线可过」动态图连通性
思路 动态图连通性的板子,可惜我不会在线算法 离线可以使用线段树分治,每个边按照存在的时间插入线段树的对应节点中,最后再dfs一下求出解即可,注意并查集按秩合并可以支持撤销操作 由于大量使用STL跑的 ...
- [quartz] - Cron表达式举例
Quartz是一个任务调度框架.比如你遇到这样的问题 想每月25号,信用卡自动还款 想每年2月14日自己给当年暗恋女神发一封匿名贺卡 想每隔1小时,备份一下自己的SpringCloud学习笔记到云盘 ...
- 【C#】非常重要的泛型
泛型 为什么要有泛型, 在没有泛型之前, 什么东西充当了泛型的作用? 在泛型出现之前, 代码中会有很多需要强制转换的地方. 比如 int a = (int) object, 对于这样类似的代码, 编译 ...
- kylin3
RDBMS: 关系数据库管理系统(Relational Database Management System),是将数据组织为相关的行和列的系统,而管理关系数据库的计算机软件就是关系数据库管理系统, ...
- JS加载获取父窗体传递的参数
JS加载获取父窗体传递的参数 $(document).ready(function () { var query = location.search.substring(1); var values ...
- android studio 的基本使用和建立一个小项目
https://github.com/allenxieyusheng/Android-Studio
- ERP系统知识笔记
中心思想: 1.不管哪一家的ERP系统,都是以“平衡供需”为目的.以计划为中心思想的,并将各管理职能作紧密的集成 2.手工管理方式下,对库存量的掌握是不完整的.手工方式下,我们的数据只有现存量,无法记 ...
- 9. spring项目中web.xml详解解读
引言:本篇博客的内容大部分都来自网上,有的是直接copy,有的是自己整理而来.既然网上已经有了,为啥还有自己copy呢? 感觉是因为网上的东西太散了或者是样式不够美观,所以自己又copy了一遍.如有侵 ...