FWT在三种位运算下都满足FWT(a×b)=FWT(a)*FWT(b)

其中or卷积和and卷积还可以通过FMT实现(本质上就是个高维前缀和)

#include<bits/stdc++.h>
#define N 1100000
#define eps 1e-7
#define inf 1e9+7
#define db double
#define ll long long
#define ldb long double
using namespace std;
inline int read()
{
char ch=0;
int x=0,flag=1;
while(!isdigit(ch)){ch=getchar();if(ch=='-')flag=-1;}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*flag;
}
const ll mo=998244353;
int ksm(int x,int k)
{
int ans=1;
while(k)
{
if(k&1)ans=1ll*ans*x%mo;
k>>=1;x=1ll*x*x%mo;
}
return ans;
}
void fwt_or(int *f,int n,int flag)
{
for(int k=2,kk=1;k<=(1<<n);k<<=1,kk<<=1)
for(int i=0;i<(1<<n);i+=k)
for(int j=0;j<kk;j++)
f[i+j+kk]=(f[i+j+kk]+flag*f[i+j])%mo;
}
void fwt_and(int *f,int n,int flag)
{
for(int k=2,kk=1;k<=(1<<n);k<<=1,kk<<=1)
for(int i=0;i<(1<<n);i+=k)
for(int j=0;j<kk;j++)
f[i+j]=(f[i+j]+flag*f[i+j+kk])%mo;
}
void fwt_xor(int *f,int n,int flag)
{
for(int k=2,kk=1;k<=(1<<n);k<<=1,kk<<=1)
for(int i=0;i<(1<<n);i+=k)
for(int j=0;j<kk;j++)
{
int t=f[i+j+kk];
f[i+j+kk]=(f[i+j]-t+mo)%mo;
f[i+j]=(f[i+j]+t)%mo;
}
if(flag==-1)
{
int inv=ksm(1<<n,mo-2);
for(int i=0;i<(1<<n);i++)f[i]=1ll*f[i]*inv%mo;
}
}
int a[N],b[N];
void Or(int n)
{
fwt_or(a,n,+1);fwt_or(b,n,+1);
for(int i=0;i<(1<<n);i++)a[i]=1ll*a[i]*b[i]%mo;
fwt_or(a,n,-1);
}
void And(int n)
{
fwt_and(a,n,+1);fwt_and(b,n,+1);
for(int i=0;i<(1<<n);i++)a[i]=1ll*a[i]*b[i]%mo;
fwt_and(a,n,-1);
}
void Xor(int n)
{
fwt_xor(a,n,+1);fwt_xor(b,n,+1);
for(int i=0;i<(1<<n);i++)a[i]=1ll*a[i]*b[i]%mo;
fwt_xor(a,n,-1);
}
int A[N],B[N];
int main()
{
int n=read();
for(int i=0;i<(1<<n);i++)A[i]=read();
for(int i=0;i<(1<<n);i++)B[i]=read(); for(int i=0;i<(1<<n);i++)a[i]=A[i],b[i]=B[i];
Or(n);for(int i=0;i<(1<<n);i++)printf("%lld ",(a[i]%mo+mo)%mo);printf("\n"); for(int i=0;i<(1<<n);i++)a[i]=A[i],b[i]=B[i];
And(n);for(int i=0;i<(1<<n);i++)printf("%lld ",(a[i]%mo+mo)%mo);printf("\n"); for(int i=0;i<(1<<n);i++)a[i]=A[i],b[i]=B[i];
Xor(n);for(int i=0;i<(1<<n);i++)printf("%lld ",(a[i]%mo+mo)%mo);printf("\n"); return 0;
}

【模板/经典题型】FWT的更多相关文章

  1. 【模板/经典题型】树上第k大

    直接对树dfs一发,对每个节点建出主席树. 查询的时候主席树上二分,四个参数x+y-lca(x,y)-fa[lca(x,y)]. 如果要求支持动态加边的话,只需要一个启发式合并即可,每次暴力重构主席树 ...

  2. 【模板/经典题型】min-max容斥

    一定注意容斥的时候-1的系数多加了1. 然后一种很常见的min-max容斥的策略就是以每个元素的出现时间作为权值. 最后一个出现的时间即为max,也就等价于全集出现的时间.

  3. 【模板/经典题型】带有直线限制的NE Latice Path计数

    平移一下,变成不能接触y=x+1. 注意下面的操作(重点) 做点p=(n,m)关于这条直线的对称点q=(m-1,n+1). ans=f(p)-f(q). 其中f(x)为从(0,0)到点x的方案数.

  4. 针对JS经典题型对全局变量及局部变量的理解浅谈

    第一次写博,还蛮激动... 看到了三题经典题型,就我目前的认识对此题进行总结.如有错误,敬请指正 首先,我们先明确一下JS引擎的工作步骤: js引擎工作分为两步: 1.将这个js中的变量和函数声明保存 ...

  5. Java数据结构和算法(三):常用排序算法与经典题型

    常用的八种排序算法 1.直接插入排序 我们经常会到这样一类排序问题:把新的数据插入到已经排好的数据列中.将第一个数和第二个数排序,然后构成一个有序序列将第三个数插入进去,构成一个新的有序序列.对第四个 ...

  6. 洛谷.4717.[模板]快速沃尔什变换(FWT)

    题目链接 https://www.mina.moe/archives/7598 //285ms 3.53MB #include <cstdio> #include <cctype&g ...

  7. POJ:1094-Sorting It All Out(拓扑排序经典题型)

    Sorting It All Out Time Limit: 1000MS Memory Limit: 10000K Description An ascending sorted sequence ...

  8. poj 3685 Matrix 二分套二分 经典题型

    Matrix Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 5724   Accepted: 1606 Descriptio ...

  9. Javascript小白经典题型(一)

    1. 输出是什么? function sayHi() { console.log(name) console.log(age) var name = 'Lydia' let age = 21 } sa ...

随机推荐

  1. selinux权限问题【转】

    本文转载自:https://blog.csdn.net/u011386173/article/details/83339770 版权声明:本文为博主原创文章,未经博主允许不得转载. https://b ...

  2. noip模拟【array】

    array by ysy [题目描述] 给定一个长度为n的数列,每次你可以进行以下操作之一: (1)将一个数+a: (2)将一个数-a: (3)将一个数+b: (4)将一个数-b: 你需要将所有数全部 ...

  3. 【重新分配分片】Elasticsearch通过reroute api重新分配分片

    elasticsearch可以通过reroute api来手动进行索引分片的分配. 不过要想完全手动,必须先把cluster.routing.allocation.disable_allocation ...

  4. NOI 2011 阿狸的打字机(AC自动机+主席树)

    题意 https://loj.ac/problem/2444 思路 ​多串匹配,考虑 \(\text{AC}\) 自动机.模拟打字的过程,先建出一棵 \(\text{Trie}\) 树,把它变成自动机 ...

  5. String、StringBuffer 的使用 ,两个面试问题

    1>统计不同类型字符个数 public static void main(String[] args) { //案例:统计不同类型字符个数 String password = "abZ ...

  6. 【ASP.NET】The CodeDom provider type “Microsoft.CodeDom.Providers.DotNetCompilerPlatform.CSharpCodeProvider” could not be located

    一般是asp.net的项目在启动的时候会报这个错误. 页面显示成: 我推测的原因是由于project的build的输出属性改了, 非bin目录下, 导致这个问题. 解决这个问题的方案有两个: 1. 改 ...

  7. SpringBoot war包部署到Tomcat服务器

    (1)pom.xml文件修改<packaging>war</packaging>,默认是jar包,<build>节点中增加<finalName>spri ...

  8. python学习之re库

    正则表达式库re是非常重要的一个库. 首先正则表达式有两种表示类型,一种是raw string类型(原生字符串类型),也就是我们经常看到的r'  '的写法,另一种是不带r的写法,称为string类型. ...

  9. Python统计list中各个元素出现的次数

    来自:天蝎圣诞结 利用Python字典统计 利用Python的collection包下Counter类统计 利用Python的pandas包下的value_counts类统计 字典统计 a = [1, ...

  10. idea环境下建立maven工程并运行scala程序

    idea中scala编程环境及建立maven工程 1.下载idea软件并破解:http://blog.csdn.net/nn_jbrs/article/details/70139178 2.安装sca ...