(转) GAN论文整理
本文转自:http://www.jianshu.com/p/2acb804dd811
GAN论文整理
原始GAN
Goodfellow和Bengio等人发表在NIPS 2014年的文章Generative adversary network,是生成对抗网络的开创文章,论文思想启发自博弈论中的二人零和博弈。在二人零和博弈中,两位博弈方的利益之和为零或一个常数,即一方有所得,另一方必有所失。GAN模型中的两位博弈方分别由生成式模型(generative model)和判别式模型(discriminative model)充当。生成模型G捕捉样本数据的分布,判别模型D是一个二分类器,估计一个样本来自于训练数据(而非生成数据)的概率。G和D一般都是非线性映射函数,例如多层感知机、卷积神经网络等。
如图所示,左图是一个判别式模型,当输入训练数据x时,期待输出高概率(接近1);右图下半部分是生成模型,输入是一些服从某一简单分布(例如高斯分布)的随机噪声z,输出是与训练图像相同尺寸的生成图像。向判别模型D输入生成样本,对于D来说期望输出低概率(判断为生成样本),对于生成模型G来说要尽量欺骗D,使判别模型输出高概率(误判为真实样本),从而形成竞争与对抗。
GAN优势很多:根据实际的结果,看上去产生了更好的样本;GAN能训练任何一种生成器网络;GAN不需要设计遵循任何种类的因式分解的模型,任何生成器网络和任何鉴别器都会有用;GAN无需利用马尔科夫链反复采样,无需在学习过程中进行推断,回避了近似计算棘手的概率的难题。
GAN主要存在的以下问题:网络难以收敛,目前所有的理论都认为GAN应该在纳什均衡上有很好的表现,但梯度下降只有在凸函数的情况下才能保证实现纳什均衡。
GAN发展
一方面GAN的发展很快,这里只是简单粗略将相关论文分了几类,欢迎反馈,持续更新。此外最近ICLR 2017 在进行Open Review,可以关注下ICLR 2017 Conference Track,也有相应论文笔记分享ICLR 2017 | GAN Missing Modes 和 GAN
GAN从2014年到现在发展很快,特别是最近ICLR 2016/2017关于GAN的论文很多,GAN现在有很多问题还有到解决,潜力很大。总体可以将已有的GANs论文分为以下几类
- GAN Theory
- GAN in Semi-supervised
- Muti-GAN
- GAN with other Generative model
- GAN with RNN
- GAN in Application
GAN Theory
此类关注与无监督GAN本身原理的研究:比较两个分布的距离;用DL的一些方法让GAN快速收敛等等。相关论文有:
- GAN: Goodfellow, Ian, et al. "Generative adversarial nets." Advances in Neural Information Processing Systems. 2014.
- LAPGAN: Denton, Emily L., Soumith Chintala, and Rob Fergus. "Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks." Advances in neural information processing systems. 2015.
- DCGAN: Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).
- Improved GAN: Salimans, Tim, et al. "Improved techniques for training gans." arXiv preprint arXiv:1606.03498 (2016).
- InfoGAN: Chen, Xi, et al. "Infogan: Interpretable representation learning by information maximizing generative adversarial nets." arXiv preprint arXiv:1606.03657(2016).**
- EnergyGAN: Zhao, Junbo, Michael Mathieu, and Yann LeCun. "Energy-based Generative Adversarial Network." arXiv preprint arXiv:1609.03126 (2016).
- Creswell, Antonia, and Anil A. Bharath. "Task Specific Adversarial Cost Function." arXiv preprint arXiv:1609.08661 (2016).
- f-GAN: Nowozin, Sebastian, Botond Cseke, and Ryota Tomioka. "f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization." arXiv preprint arXiv:1606.00709 (2016).
- Unrolled Generative Adversarial Networks, ICLR 2017 Open Review
- Improving Generative Adversarial Networks with Denoising Feature Matching, ICLR 2017 Open Review
- Mode Regularized Generative Adversarial Networks, ICLR 2017 Open Review
- b-GAN: Unified Framework of Generative Adversarial Networks, ICLR 2017 Open Review
- Mohamed, Shakir, and Balaji Lakshminarayanan. "Learning in Implicit Generative Models." arXiv preprint arXiv:1610.03483 (2016).
GAN in Semi-supervised
此类研究将GAN用于半监督学习,相关论文有:
- Springenberg, Jost Tobias. "Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks." arXiv preprint arXiv:1511.06390 (2015).
- Odena, Augustus. "Semi-Supervised Learning with Generative Adversarial Networks." arXiv preprint arXiv:1606.01583 (2016).
Muti-GAN
此类研究将多个GAN进行组合,相关论文有:
- CoupledGAN: Liu, Ming-Yu, and Oncel Tuzel. "Coupled Generative Adversarial Networks." arXiv preprint arXiv:1606.07536 (2016).
- Wang, Xiaolong, and Abhinav Gupta. "Generative Image Modeling using Style and Structure Adversarial Networks." arXiv preprint arXiv:1603.05631(2016).
- Generative Adversarial Parallelization, ICLR 2017 Open Review
- LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation, ICLR 2017 Open Review
GAN with other Generative model
此类研究将GAN与其他生成模型组合,相关论文有:
- Dosovitskiy, Alexey, and Thomas Brox. "Generating images with perceptual similarity metrics based on deep networks." arXiv preprint arXiv:1602.02644(2016).
- Larsen, Anders Boesen Lindbo, Søren Kaae Sønderby, and Ole Winther. "Autoencoding beyond pixels using a learned similarity metric." arXiv preprint arXiv:1512.09300 (2015).
- Theis, Lucas, and Matthias Bethge. "Generative image modeling using spatial lstms." Advances in Neural Information Processing Systems. 2015.
GAN with RNN
此类研究将GAN与RNN结合(也以参考Pixel RNN),相关论文有:
- Im, Daniel Jiwoong, et al. "Generating images with recurrent adversarial networks." arXiv preprint arXiv:1602.05110 (2016).
- Kwak, Hanock, and Byoung-Tak Zhang. "Generating Images Part by Part with Composite Generative Adversarial Networks." arXiv preprint arXiv:1607.05387 (2016).
- Yu, Lantao, et al. "SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient." arXiv preprint arXiv:1609.05473 (2016).
GAN in Application
此类研究将GAN的实际运用(不包括图像生成),相关论文有:
- Zhu, Jun-Yan, et al. "Generative visual manipulation on the natural image manifold." European Conference on Computer Vision. Springer International Publishing, 2016.
- Creswell, Antonia, and Anil Anthony Bharath. "Adversarial Training For Sketch Retrieval." European Conference on Computer Vision. Springer International Publishing, 2016.
- Reed, Scott, et al. "Generative adversarial text to image synthesis." arXiv preprint arXiv:1605.05396 (2016).
- Ravanbakhsh, Siamak, et al. "Enabling Dark Energy Science with Deep Generative Models of Galaxy Images." arXiv preprint arXiv:1609.05796(2016).
- Abadi, Martín, and David G. Andersen. "Learning to Protect Communications with Adversarial Neural Cryptography." arXiv preprint arXiv:1610.06918(2016).
- Odena, Augustus, Christopher Olah, and Jonathon Shlens. "Conditional Image Synthesis With Auxiliary Classifier GANs." arXiv preprint arXiv:1610.09585 (2016).
- Ledig, Christian, et al. "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network." arXiv preprint arXiv:1609.04802 (2016).
- Nguyen, Anh, et al. "Synthesizing the preferred inputs for neurons in neural networks via deep generator networks." arXiv preprint arXiv:1605.09304(2016).
(转) GAN论文整理的更多相关文章
- REST架构简析(原论文整理)
0 引言 目前,互联网在社会中扮演的角色越来越重要.通过互联网为广大群众提供服务,也是互联网成功的关键.互联网服务架构目前大多数都是基于REST架构来完成的.REST从它诞生至今,可以说 ...
- Generative Adversarial Networks,gan论文的畅想
前天看完Generative Adversarial Networks的论文,不知道有什么用处,总想着机器生成的数据会有机器的局限性,所以百度看了一些别人 的看法和观点,可能我是机器学习小白吧,看完之 ...
- 深度学习-Wasserstein GAN论文理解笔记
GAN存在问题 训练困难,G和D多次尝试没有稳定性,Loss无法知道能否优化,生成样本单一,改进方案靠暴力尝试 WGAN GAN的Loss函数选择不合适,使模型容易面临梯度消失,梯度不稳定,优化目标不 ...
- CVPapers论文整理工具-开源
一.工具介绍及运行实例 相信计算机视觉领域的同道中人都知道这个Computer Vision Resource网站, http://www.cvpapers.com/ 网页部分截图如下: 可以看到有 ...
- 条件GAN论文简单解读
条件GAN(Conditional Generative Adversarial Nets),原文地址为CGAN. Abstract 生成对抗网络(GAN)是最近提出的训练生成模型(g ...
- OCR论文整理
论文地址:https://github.com/ChanChiChoi/awesome-ocr 下面是已经看过的论文: CTPN CRNN TextBoxes EAST FOTS PixelLink
- Gan-based zero-shot learning 论文整理
1 Feature Generating Networks for Zero-Shot Learning Suffering from the extreme training data imbala ...
- 《Graph-Based Reasoning over Heterogeneous External Knowledge for Commonsense Question Answering》论文整理
融合异构知识进行常识问答 论文标题 -- <Graph-Based Reasoning over Heterogeneous External Knowledge for Commonsense ...
- 网络压缩论文整理(network compression)
1. Parameter pruning and sharing 1.1 Quantization and Binarization Compressing deep convolutional ne ...
随机推荐
- codefroces 266
D题说的是 你选定一个区间如[l r] 将这个区间内的每个数都加上1,然后求将这整个整个序列都变成h的方案数有多少种 没有一个位置会有超过1次方[ 或者放 ] 考虑当前位置放的是什么 有5种 - 不 ...
- C#之Action的实际应用例子
public class DemoAction{ public Action action; public Action<int> action1; public Action<in ...
- Java多线程-----原子变量和CAS算法
原子变量 原子变量保证了该变量的所有操作都是原子的,不会因为多线程的同时访问而导致脏数据的读取问题 Java给我们提供了以下几种原子类型: AtomicInteger和Ato ...
- canvas添加水印
<canvas id="canvas"></canvas><canvas id="water"></canvas> ...
- 【Hadoop学习之六】MapReduce原理
一.概念MapReduce:"相同"的key为一组,调用一次reduce方法,方法内迭代这一组数据进行计算 块.分片.map.reduce.分组.分区之间对应关系block > ...
- git使用遇到的坑
把一个完整项目提交到github上步骤以及注意事项 Git的安装就不说了. 第一步:mkdir/cd 我们需要先创建一个本地的版本库(其实也就是一个文件夹). 你可以直接右击新建文件夹,也可以右击打开 ...
- Collections集合工具类的方法
addAll & shuffle: 返回类型为boolean类型,执行完操作不接收也行: 其中,静态方法,与对象无关,类名点方法名直接调用: 点点点为可变参数,随便填写几个参数都可以: sor ...
- LUHN 模10 算法 银行卡校验
信用卡Luhn算法(模10)具体的校验过程如下: 1.从卡号最后一位数字开始,逆向将奇数位(1.3.5等等)相加. 2.从卡号最后一位数字开始,逆向将偶数位数字,先乘以2(如果乘积为两位数,则将其减去 ...
- php开启xdebug扩展
1.下载Xdebug(先看php下的ext文件夹(C:\xampp\php\ext)下有没有php_xdebug.dll文件,如果有的话,就不用下了.) 到目前为止,Xdebug的最新版本为2.7.0 ...
- Django里自定义用户登陆及登陆后跳转到登陆前页面的实现
def logout(request): request.session.flush() return HttpResponseRedirect(request.META.get('HTTP_REFE ...