题目链接

先随便建一棵树。

如果两个点(u,v)不经过非树边,它们的dis可以直接算。

如果两个点经过非树边呢?即它们一定要经过该边的两个端点,可以直接用这两个点到 u,v 的最短路更新答案。

所以枚举每条非树边的两个端点,求一遍这两个点到所有点的最短路。非树边最多21条,所以要求一遍最短路的点最多42个。

另外对于一条边的两个点只求一个就好了。因为要用这条非树边的话它们两个都要经过。

//779ms	28900KB
#include <queue>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define mp std::make_pair
#define pr std::pair<LL,int>
//#define gc() getchar()
#define MAXIN 250000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=1e5+5; int Enum,H[N],nxt[N<<1],to[N<<1],len[N<<1],fa[N],dep[N],sz[N],son[N],top[N],sk[N];
LL dist[N],dis[23][N];
bool upd[N],nottree[N];
std::priority_queue<pr> q;
char IN[MAXIN],*SS=IN,*TT=IN; #define AE(u,v,w) to[++Enum]=v,nxt[Enum]=H[u],H[u]=Enum,len[Enum]=w,to[++Enum]=u,nxt[Enum]=H[v],H[v]=Enum,len[Enum]=w
inline int read()
{
int now=0; register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline int LCA(int u,int v)
{
while(top[u]!=top[v]) dep[top[u]]>dep[top[v]]?u=fa[top[u]]:v=fa[top[v]];
return dep[u]>dep[v]?v:u;
}
int Find(int x)
{
return x==fa[x]?x:fa[x]=Find(fa[x]);
}
void DFS1(int x)
{
int mx=0; sz[x]=1;
for(int v,i=H[x]; i; i=nxt[i])
if(!nottree[i] && (v=to[i])!=fa[x])
{
fa[v]=x, dep[v]=dep[x]+1, dist[v]=dist[x]+len[i], DFS1(v), sz[x]+=sz[v];
if(sz[v]>mx) mx=sz[v], son[x]=v;
}
}
void DFS2(int x,int tp)
{
top[x]=tp;
if(son[x])
{
DFS2(son[x],tp);
for(int i=H[x]; i; i=nxt[i])
if(!nottree[i] && to[i]!=fa[x] && to[i]!=son[x]) DFS2(to[i],to[i]);
}
}
void Dijkstra(LL *dis,int s,int n)
{
static bool vis[N]; memset(vis,0,sizeof vis);
memset(dis,0x3f,sizeof(LL)*(n+1));//dis是指针!
dis[s]=0, q.push(mp(0,s));
while(!q.empty())
{
int x=q.top().second; q.pop();
if(vis[x]) continue;
vis[x]=1;
for(int i=H[x],v; i; i=nxt[i])
if(dis[v=to[i]]>dis[x]+len[i]) q.push(mp(-(dis[v]=dis[x]+len[i]),v));
}
} int main()
{
int n=read(), m=read(); Enum=1;
for(int i=1; i<=n; ++i) fa[i]=i; int tote=0,cnt=0;
for(int i=1,r1,r2,u,v,w; i<=m; ++i)
{
r1=Find(u=read()), r2=Find(v=read()), w=read();
AE(u,v,w);
if(r1==r2) nottree[Enum]=1, nottree[Enum^1]=1, sk[++tote]=Enum;
else fa[r1]=r2;
}
fa[1]=1, DFS1(1), DFS2(1,1);
for(int i=1; i<=tote; ++i)
{
int e=sk[i];
if(!upd[to[e]]) upd[to[e]]=1, Dijkstra(dis[++cnt],to[e],n);
// if(!upd[to[e^1]]) upd[to[e^1]]=1, Dijkstra(dis[++cnt],to[e^1],n);
} for(int Q=read(),u,v; Q--; )
{
u=read(),v=read();
LL ans=dist[u]+dist[v]-(dist[LCA(u,v)]<<1ll);
for(int i=1; i<=cnt; ++i)
ans=std::min(ans,dis[i][u]+dis[i][v]);
printf("%I64d\n",ans);
} return 0;
}

Codeforces.1051F.The Shortest Statement(最短路Dijkstra)的更多相关文章

  1. codeforces 1051F The Shortest Statement

    题目链接:codeforces 1051F The Shortest Statement 题意:\(q\)组询问,求任意两点之间的最短路,图满足\(m-n\leq 20\) 分析:一开始看这道题:fl ...

  2. 2018.09.24 codeforces 1051F. The Shortest Statement(dijkstra+lca)

    传送门 这真是一道一言难尽的题. 首先比赛的时候居然没想出来正解. 其次赛后调试一直调不出来最后发现是depth传错了. 其实这是一道简单题啊. 对于树边直接lca求距离. 由于非树边最多21条. 因 ...

  3. [Codeforces 1051F] The Shortest Statement 解题报告(树+最短路)

    题目链接: https://codeforces.com/contest/1051/problem/F 题目大意: 给出一张$n$个点,$m$条边的带权无向图,多次询问,每次给出$u,v$,要求输出$ ...

  4. Codeforces 1051E Vasya and Big Integers&1051F The Shortest Statement

    1051E. Vasya and Big Integers 题意 给出三个大整数\(a,l,r\),定义\(a\)的一种合法的拆分为把\(a\)表示成若干个字符串首位相连,且每个字符串的大小在\(l, ...

  5. Codeforces.567E.President and Roads(最短路 Dijkstra)

    题目链接 \(Description\) 给定一张有向图,求哪些边一定在最短路上.对于不一定在最短路上的边,输出最少需要将其边权改变多少,才能使其一定在最短路上(边权必须为正,若仍不行输出NO). \ ...

  6. Codeforces Gym101502 I.Move Between Numbers-最短路(Dijkstra优先队列版和数组版)

    I. Move Between Numbers   time limit per test 2.0 s memory limit per test 256 MB input standard inpu ...

  7. Codeforces 715B. Complete The Graph 最短路,Dijkstra,构造

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF715B.html 题解 接下来说的“边”都指代“边权未知的边”. 将所有边都设为 L+1,如果dis(S,T ...

  8. cf1051F. The Shortest Statement(最短路)

    题意 题目链接 题意:给出一张无向图,每次询问两点之间的最短路,满足$m - n <= 20$ $n, m, q \leqslant 10^5$ Sol 非常好的一道题. 首先建出一个dfs树. ...

  9. The Shortest Statement CodeForces - 1051F(待测试)

    #include <iostream> #include <cstdio> #include <sstream> #include <cstring> ...

随机推荐

  1. SpringBoot集成Dubbo

    (1).新建一个普通Maven项目,用于存放一些公共服务接口及公共的Bean等. 项目: 公共Bean: package cn.coreqi.entities; import java.io.Seri ...

  2. 首次使用Vue开发

    1.首先在页面上添加如下的代码 var app = new Vue({ el: '#signupForm', data: { UserName: '', PWD: '' } }); 2.在下面添加ht ...

  3. 手把手教你写makefile【原创】

    Makefile  编写 Make  -f  makefile1 指定 如下是 本人的一点makefile学习笔记,再分享一个不错的写makefile总结的网址: http://www.cnblogs ...

  4. mysql系列四、mySQL四舍五入函数用法总结

    一.MySQL四舍五入函数ROUND(x) ROUND(x)函数返回最接近于参数x的整数,对x值进行四舍五入. 实例: 使用ROUND(x)函数对操作数进行四舍五入操作.SQL语句如下: mysql& ...

  5. tomcat jsp页面乱码解决

    浏览器接收服务器响应的中文参数: JSP页面中告诉浏览器使用什么编码: <%@ page language="java" contentType="text/htm ...

  6. apache httpd.conf

    Apache的主配置文件:/etc/httpd/conf/httpd.conf 默认站点主目录:/var/www/html/ Apache服务器的配置信息全部存储在主配置文件/etc/httpd/co ...

  7. 如何判断mac地址时multicast还是broadcast ?

    ethernet 的地址其实就是mac地址,长度为6 byte,其中有一位为 multicast bit 位. 当unicast/multicast bit 位置1时就是 multicast,mac ...

  8. Android命令Monkey压力测试,详解

    一.Monkey 是什么?Monkey 就是SDK中附带的一个工具. 二.Monkey 测试的目的?:该工具用于进行压力测试. 然后开发人员结合monkey 打印的日志 和系统打印的日志,结局测试中出 ...

  9. Node.js Error: listen EADDRNOTAVAIL

    1 前言 nodejs部署在云服务器,外网用域名加端口访问不进来,但在服务器本地用127.0.0.1加端口可以访问,并且端口已经放开,然后只能排查配置.此文章仅作为记录使用. 如果端口和另一个的端口一 ...

  10. vue系列之flex经典案例

    案例分析: 1.中间文字居中 2.文字俩边有横线 横线无法固定宽度,因为在大屏手机上,容易出现Bug,宽度不够,俩边会出现大量空隙 解决办法,使用flex布局(网站链接) 代码: <div cl ...