BZOJ2861 : 双向边定向为单向边
将每条双向边拆成两条单向边,若两条边中至少存在一条边使得删掉它之后图中SCC个数不变,则这条边可以定向。
将边中间加上点,变成删点问题。
对于每个SCC单独考虑,随便选择一个不是拆点出来的点S作为源。
则在正图或者反图的Dominator Tree上的所有非叶子节点均会影响连通性。
用Lengauer-Tarjan算法求出Dominator Tree即可。
时间复杂度$O((n+m)\alpha(n+m))$。
#include<cstdio>
const int N=500010,M=800010;
int n,m,lim,i,x,y,z,ans;bool vis[N],cut[N];
int g0[N],g1[N],v[M*2],nxt[M*2],ed,f[N],q[N],t,size,now[N],rk[N];
namespace DT{
int n,g1[N],g2[N],gd[N],v[M*3+N],nxt[M*3+N],ed;
int cnt,dfn[N],id[N],fa[N],f[N],mn[N],sd[N],idom[N];
inline void add(int*g,int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
inline void add(int x,int y){add(g1,x,y);add(g2,y,x);}
int F(int x){
if(f[x]==x)return x;
int y=F(f[x]);
if(sd[mn[x]]>sd[mn[f[x]]])mn[x]=mn[f[x]];
return f[x]=y;
}
void dfs(int x){
id[dfn[x]=++cnt]=x;
for(int i=g1[x];i;i=nxt[i])if(!dfn[v[i]])dfs(v[i]),fa[dfn[v[i]]]=dfn[x];
}
inline void tarjan(int S){
int i,j,k,x;
for(cnt=0,i=1;i<=n;i++)gd[i]=dfn[i]=id[i]=fa[i]=idom[i]=0,f[i]=sd[i]=mn[i]=i;
dfs(S);
for(i=n;i>1;i--){
for(j=g2[id[i]];j;j=nxt[j])F(k=dfn[v[j]]),sd[i]=sd[i]<sd[mn[k]]?sd[i]:sd[mn[k]];
add(gd,sd[i],i);
for(j=gd[f[i]=x=fa[i]];j;j=nxt[j])F(k=v[j]),idom[k]=sd[mn[k]]<x?mn[k]:x;
gd[x]=0;
}
for(i=2;i<=n;add(gd,idom[i],i),i++)if(idom[i]!=sd[i])idom[i]=idom[idom[i]];
}
inline void init(int _n){
n=_n;ed=0;
for(int i=1;i<=n;i++)g1[i]=g2[i]=0;
}
}
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
inline void add(int x,int y){
v[++ed]=y;nxt[ed]=g0[x];g0[x]=ed;
v[++ed]=x;nxt[ed]=g1[y];g1[y]=ed;
}
void dfs1(int x){
vis[x]=1;
for(int i=g0[x];i;i=nxt[i])if(!vis[v[i]])dfs1(v[i]);
q[++t]=x;
}
void dfs2(int x,int y){
vis[x]=0,f[x]=y;
now[rk[x]=++size]=x;
for(int i=g1[x];i;i=nxt[i])if(vis[v[i]])dfs2(v[i],y);
}
inline void solve(int o){
int i,j;
for(i=1;i<=size;i++)if(now[i]>lim)break;
if(i>size)return;
DT::init(size);
for(i=1;i<=size;i++)for(j=g0[now[i]];j;j=nxt[j])if(f[v[j]]==o)DT::add(i,rk[v[j]]);
for(i=1;i<=size;i++)if(now[i]<=lim){
DT::tarjan(i);
break;
}
for(i=1;i<=size;i++)if(DT::gd[DT::dfn[i]])cut[now[i]]=1;
DT::init(size);
for(i=1;i<=size;i++)for(j=g0[now[i]];j;j=nxt[j])if(f[v[j]]==o)DT::add(rk[v[j]],i);
for(i=1;i<=size;i++)if(now[i]<=lim){
DT::tarjan(i);
break;
}
for(i=1;i<=size;i++)if(DT::gd[DT::dfn[i]])cut[now[i]]=1;
}
int main(){
read(n),read(m);lim=n;
while(m--){
read(x),read(y),read(z);
if(x==y){ans+=z==2;continue;}
if(z==1)add(x,y);
else{
add(x,++n);
add(n,y);
add(y,++n);
add(n,x);
}
}
for(i=1;i<=n;i++)if(!vis[i])dfs1(i);
for(i=n;i;i--)if(vis[q[i]]){
size=0;
dfs2(q[i],q[i]);
solve(q[i]);
}
for(i=lim+1;i<=n;i+=2)if(!cut[i]||!cut[i+1])ans++;
return printf("%d",ans),0;
}
BZOJ2861 : 双向边定向为单向边的更多相关文章
- SSL双向认证和SSL单向认证的流程和区别
refs: SSL双向认证和SSL单向认证的区别https://www.jianshu.com/p/fb5fe0165ef2 图解 https 单向认证和双向认证!https://cloud.tenc ...
- 什么是SSL双向认证,与单向认证证书有什么区别?
SSL/TLS证书是用于用户浏览器和网站服务器之间的数据传输加密,实现互联网传输安全保护,大多数情况下指的是服务器证书.服务器证书是用于向浏览器客户端验证服务器,这种是属于单向认证的SSL证书.但是, ...
- Python 双向队列Deque、单向队列Queue 模块使用详解
Python 双向队列Deque 模块使用详解 创建双向队列Deque序列 双向队列Deque提供了类似list的操作方法: #!/usr/bin/python3 import collections ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- https单向认证和双向认证
单向认证: .clinet<--server .clinet-->server .client从server处拿到server的证书,通过公司的CA去验证该证书,以确认server是真实的 ...
- 基于openssl的单向和双向认证
1.前言 最近工作涉及到https,需要修改nginx的openssl模块,引入keyless方案.关于keyless可以参考CloudFlare的官方博客: https://blog.cloudfl ...
- 单向和双向tvs管
tvs管器件按极性可分为单极性和双极性两种,即单向tvs管和双向tvs管. 单向tvs管保护器件仅能对正脉冲或者负脉冲进行防护,而双向tvs管保护器件一端接要保护的线路,一端接地,无论来自反向还 ...
- SSL单向认证和双向认证说明
SSL单向认证和双向认证说明 一.SSL双向认证具体过程 浏览器发送一个连接请求给安全服务器. 服务器将自己的证书,以及同证书相关的信息发送给客户浏览器. 客户浏览器检查服务器送过来的证书是否是由自己 ...
- ORACLE GoldenGate在Windows与AIX平台ORACLE的单向、双向数据传输配置及其测试
第1章...... GoldenGate概述 1.1 GoldenGate技术原理 1.2 GoldenGate可靠的复制 1.3 GoldenGate ...
随机推荐
- javascript 添加行,删除行,datepicker获取当前日期和上一个月日期并设置格式,笔记
$(function () { getdatepicker(); today(); getPreMonth(); getdatetimepicker(); }); function today(){ ...
- shell无法捕获程序输出的问题
dir_name=`echo ~gtp` 获取的用户目录为/ dir_name=`echo ~gtp 2>&1` 这样就可以获取到了 参考网址:https://blog.csdn.net ...
- Windows10 中在指定目录下启动Powershell
(1)首先进入该目录: (2)按住shift键,且同时在该目录空白处鼠标右击,打开右键菜单: (3)此时可以发现,在右键菜单中,多了一项,叫做[在此处打开Powershell窗口(s)],点击该项: ...
- 经典SQL语句大全(转)
SQL语句参考,包含Access.MySQL 以及 SQL Server 基础 创建数据库 CREATE DATABASE database-name 删除数据库 drop database dbna ...
- MyCP(课下作业,必做)
作业要求 编写MyCP.java 实现类似Linux下cp XXX1 XXX2的功能,要求MyCP支持两个参数: java MyCP -tx XXX1.txt XXX2.bin 用来把文本文件(内容为 ...
- STM32应用实例八:与多台MS5803压力传感器I2C通讯
MS5803压力传感器支持SPI和I2C总线通讯,拥有24位AD转换.能够同时获得压力值和温度值,其中压力测量范围为10-1100mbar,温度的测量范围是-40-85摄氏度.各引脚功能及参数如下: ...
- wpf 加阴影效果导致内容模糊的问题解决
这个和GPU有关,参考地址 https://www.cplotts.com/2009/02/25/gpu-effects-blurry-text/ 产生问题的代码如下: <Window x:Cl ...
- python 全栈开发,Day50(Javascript简介,第一个JavaScript代码,数据类型,运算符,数据类型转换,流程控制,百度换肤,显示隐藏)
一.Javascript简介 Web前端有三层: HTML:从语义的角度,描述页面结构 CSS:从审美的角度,描述样式(美化页面) JavaScript:从交互的角度,描述行为(提升用户体验) Jav ...
- 【C++ Primer 第10章】再探迭代器
反向迭代器 • 反向迭代器就是在容器中从尾元素向首元素反向移动的迭代器.对于反向迭代器,递增(以及递减)操作的含义会颠倒过来. • 递增一个反向迭代器(++it)会移动到前一个元素:递减一迭代器(-- ...
- JS高级 - 面向对象5(继承,引用)
<script type="text/javascript"> //------------------Person类 //(Person)的构造函数 function ...