HDU.5628.Clarke and math(狄利克雷卷积 快速幂)
\(Description\)
$$g(i)=\sum_{i_1|i}\sum_{i_2|i_1}\sum_{i_3|i_2}\cdots\sum_{i_k|i_{k-1}}f(i_k)\ mod\ 1000000007$$
给出\(n,k,f[1\sim n]\),求\(g[1\sim n]\).
\(Solution\)
首先狄利克雷卷积(Dirichlet Product):设\(f(n),g(n)\)是两个数论函数,它们的Dirichlet乘积也是一个数论函数,
\]
简记为\(h(n)=f(n)*g(n)\)。
狄利克雷卷积有几个性质:
1. 满足交换律 \(f*g=g*f\)
2. 满足结合律 \((f*g)*h=f*(g*h)\)
3. 满足分配率 \(f*(g+h)=f*g+f*h\)
4. 存在单位元\(e\),使得\(e*f=f*e=f\)
回到本题。设\(I(x)=1\).
将式子依次展开
$$f'(i_{k-1})=\sum_{i_k|i_{k-1}}f(i_k)=\sum_{i_k|i_{k-1}}f(i_k)I(\frac{i_{k-1}}{i_k})\ ,\ \ 即f'=fI$$
$$f''(i_{k-2})=\sum_{i_{k-1}|i_{k-2}}f'(i_k-1)=\sum_{i_{k-1}|i_{k-2}}f'(i_k-1)I(\frac{i_{k-2}}{i_{k-1}})\ ,\ \ 即f''=f'*I$$.
\(\ldots\)
这样下去可以得到\(g=I*I*I*\cdots*I*f(k个I)\)。由于狄利克雷卷积满足结合律,所以\(k个I\)的狄利克雷卷积可以用快速幂\(logk\)计算。
计算狄利克雷卷积时,如果对每个\(g(i),1\leq i\leq n\)都按照定义枚举其约数计算,时间肯定爆炸。所以可以枚举约数,再枚举这些约数可以对哪些值给出贡献,那么计算一次狄利克雷卷积的复杂度就是\(O(nlogn)\),总复杂度\(O(nlognlogk)\)。
/*
刚开始要将ans初始化为单位元,即ans[2~n]=0,ans[1]=1,这样最初乘一个函数还是这个函数本身,即1
初始化x为I,I(n)=1
注:1.两个函数狄利克雷卷积是个函数
2.加两个数取模不能直接用-=mod
*/
#include<cstdio>
#include<cctype>
#include<cstring>
#define gc() getchar()
typedef long long LL;
const int N=1e5+5,mod=1e9+7;
int n,k;
LL f[N],ans[N],tmp[N],x[N];
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
#define Mod(x) x>=mod?x-=mod:0
void Dirichlet(LL *a,LL *b)//a*b
{
memset(tmp,0,sizeof tmp);
for(int i=1;i*i<=n;++i)
{
tmp[i*i]+=a[i]*b[i]%mod, Mod(tmp[i*i]);
for(int j=i+1;i*j<=n;++j)//下边加上a[i]*b[j]和a[j]*b[i],所以j从i+1开始即可
(tmp[i*j]+=a[i]*b[j]%mod+a[j]*b[i]%mod)%=mod;//注意这加两个数不能一步用Mod取模。。
}
memcpy(a,tmp,sizeof tmp);
}
void Solve()
{
for(int i=1;i<=n;++i) x[i]=1,ans[i]=0;//x:I^0
ans[1]=1;//ans:e
for(;k;k>>=1,Dirichlet(x,x))
if(k&1) Dirichlet(ans,x);
Dirichlet(ans,f);
for(int i=1;i<=n;++i) printf("%lld%c",ans[i],i==n?'\n':' ');//空格及换行符有要求
}
int main()
{
for(int t=read();t--;)
{
n=read(),k=read();
for(int i=1;i<=n;++i) f[i]=read();
Solve();
}
return 0;
}
HDU.5628.Clarke and math(狄利克雷卷积 快速幂)的更多相关文章
- HDU 5628 Clarke and math Dirichlet卷积+快速幂
题意:bc round 72 中文题面 分析(官方题解): 如果学过Dirichlet卷积的话知道这玩意就是g(n)=(f*1^k)(n), 由于有结合律,所以我们快速幂一下1^k就行了. 当然,强行 ...
- HDU 5628 Clarke and math——卷积,dp,组合
HDU 5628 Clarke and math 本文属于一个总结了一堆做法的玩意...... 题目 简单的一个式子:给定$n,k,f(i)$,求 然后数据范围不重要,重要的是如何优化这个做法. 这个 ...
- HDU 5628 Clarke and math dp+数学
Clarke and math 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5628 Description Clarke is a patient ...
- HDU 1757 A Simple Math Problem (矩阵快速幂)
题目 A Simple Math Problem 解析 矩阵快速幂模板题 构造矩阵 \[\begin{bmatrix}a_0&a_1&a_2&a_3&a_4&a ...
- hdu 1757 A Simple Math Problem_矩阵快速幂
题意:略 简单的矩阵快速幂就行了 #include <iostream> #include <cstdio> #include <cstring> using na ...
- hdu 5187 zhx's contest [ 找规律 + 快速幂 + 快速乘法 || Java ]
传送门 zhx's contest Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- HDU 2855 斐波那契+矩阵快速幂
http://acm.hdu.edu.cn/showproblem.php?pid=2855 化简这个公式,多写出几组就会发现规律 d[n]=F[2*n] 后面的任务就是矩阵快速幂拍一个斐波那契模板出 ...
- HDU 5950:Recursive sequence(矩阵快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:给出 a,b,n,递推出 f(n) = f(n-1) + f(n-2) * 2 + n ^ 4. f ...
- HDU1757 A Simple Math Problem 矩阵快速幂
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
随机推荐
- GitHub:Awesome-Hacking(黑客技能列表-恶意代码)
0 初衷 GitHub这一份黑客技能列表很不错,包含了多个方向的安全.但目前我关注只有逆向工程与恶意代码,所以其他的被暂时略过. 虽然很感谢作者的辛勤付出,但并不打算复制粘贴全套转载.逐条整理是为了从 ...
- GCC编译过程与动态链接库和静态链接库
1. 库的介绍 库是写好的现有的,成熟的,可以复用的代码.现实中每个程序都要依赖很多基础的底层库,不可能每个人的代码都从零开始,因此库的存在意义非同寻常. 本质上来说库是一种可执行代码的二进制形式,可 ...
- python高级编程读书笔记(一)
python高级编程读书笔记(一) python 高级编程读书笔记,记录一下基础和高级用法 python2和python3兼容处理 使用sys模块使程序python2和python3兼容 import ...
- nodejs async series 小白向
async.series({ flag1:function(done){ //flag1 是一个流程标识,用户自定义 //逻辑处理 done(null,"返回结果&qu ...
- Oracle 同步
原文出处:http://www.cnblogs.com/zeromyth/archive/2009/08/19/1549661.html Oracle备份功能包括: 高级复制(Advanced Rep ...
- OCM_第四天课程:Section2 —》GC 的安装和配置
注:本文为原著(其内容来自 腾科教育培训课堂).阅读本文注意事项如下: 1:所有文章的转载请标注本文出处. 2:本文非本人不得用于商业用途.违者将承当相应法律责任. 3:该系列文章目录列表: 一:&l ...
- VS2013 "当前不会命中断点.还没有为该文档家在任何符号" 解决办法
参考:http://blog.csdn.net/u010797208/article/details/40452797 亲测可行
- 11:django 模板 内建标签
django 内建标签 autoescape 控制当前自动转义的行为,有on和off两个选项 {% autoescape on %} {{ body }} {% endautoescape %} bl ...
- 线上Slave报1062的案例
最近经常线上的Slave老报1062的错误,蛋碎一地,幸好Slave暂时没有用到业务上,也就是说没有做读写分离,所以Slave有问题,影响也不大,但每隔一阵子就报1062主键冲突的错误,让我好纠结,如 ...
- JavaScript常见的假值
值 说明 var a=false; 值等于false(假) var a =0; 值等于0 var a=''; 空的字符串 var a=10/'abc' NaN var a; 未赋值变量