BZOJ.4542.[HNOI2016]大数(莫队)
大数除法是很麻烦的,考虑能不能将其条件化简
一段区间[l,r]|p,即num[l,r]|p,类似前缀,记后缀suf[i]表示[i,n]的这段区间代表的数字
于是有 suf[l]-suf[r+1]|p -> (suf[l]-suf[r+1])%p = 0 -> suf[l] ≡suf[r+1] (mod p)
即若suf[r+1]%p = suf[l]%p,则num[l,r]|p
于是我们可以把范围控制在p以内,查找是否有%p相等的区间 -> 莫队
即小Z的袜子
这样的实际意义是 \((suf[l]-suf[r+1])*10^{n-r}%p = 0\)
后面有个10的幂,如果n-r>0 对于p(p|10)显然无论[l,r]是什么都会满足条件
于是p=2,5时要换一种判断方式。显然若有一位A[i]满足A[i]|p,则之前的Aj都可以以它为结尾并对答案做出贡献
若数列(都加l-1)a,b,c,d,e中,A[a,d,e]|p,则答案为e+d+a-3*(l-1)
这个在线做就可以了 (另外有人知道这个我莫队为什么不对吗。。)
另外要注意p范围不定,要对出现的余数离散化
然后参数p和模数p会重着 要注意!
要注意会有A[n+1],离散化要注意这个变量默认0!
另外p<P时特判为什么不对。。
洛谷数据真的水。。在BZOJ被longlong什么的各种坑。
#include <cmath>
#include <cctype>
#include <cstdio>
#include <algorithm>
#define gc() getchar()
typedef long long LL;
const int N=2e5+5,P=1e6;
int n,m,size,tm[P+5],Cnt;
LL p/*LL!*/,A[N],suf[N],ref[N],Now,Ans[N],sum[N],num[N];
struct Ask
{
int l,r,id;
bool operator <(const Ask &a)const {
return l/size==a.l/size?r<a.r:l/size<a.l/size;
}
}q[N];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void Update(int pos,int delta){
if(!(A[pos]%p)) Now+=delta*pos, Cnt+=delta;
}
void Spec()
{
for(int i=1; i<=n; ++i)
if(A[i]%p) sum[i]=sum[i-1],num[i]=num[i-1];
else sum[i]=sum[i-1]+i,num[i]=num[i-1]+1;
for(LL l,r,i=1; i<=m; ++i)
l=read(),r=read(), printf("%lld\n",sum[r]-sum[l-1]-(num[r]-num[l-1])*(l-1));
// for(int l=1,r=0,i=1; i<=m; ++i)
// {
// while(l<q[i].l) Update(l,-1),++l;
// while(l>q[i].l) --l,Update(l,1);
// while(r<q[i].r) ++r,Update(r,1);
// while(r>q[i].r) Update(r,-1),--r;
// Ans[q[i].id]=Now-Cnt*(q[i].l-1);
// }
}
inline void Add(int p){
if(!p) return;
Now+=tm[p], ++tm[p];
// if(++tm[p]>1) Now+=tm[p]-1;//不要判什么tm[]>1之类满足才更新答案,因为tm[]在中间过程是可以存在负数的
}
inline void Subd(int p){
if(!p) return;
--tm[p], Now-=tm[p];
// if(--tm[p]) Now-=tm[p];//这一写法效果一样(因为只判了!=0) 但不能这么写
}
void Normal()
{
for(int l=1,r=0,i=1; i<=m; ++i)
{
while(l<q[i].l) Subd(suf[l++]);
while(l>q[i].l) Add(suf[--l]);
while(r<q[i].r) Add(suf[++r]);
while(r>q[i].r) Subd(suf[r--]);
Ans[q[i].id]=Now;
}
}
int Find(int x,int r)
{
int l=1,mid;
while(l<r)
if(ref[mid=l+r>>1]>=x) r=mid;
else l=mid+1;
return l;
}
void Discrete()
{
for(int i=1; i<=n; ++i) ref[i]=suf[i];
std::sort(ref+1,ref+1+n);
int cnt=1;
for(int i=2; i<=n; ++i)
if(ref[i]!=ref[i-1]) ref[++cnt]=ref[i];
for(int i=1; i<=n; ++i) suf[i]=Find(suf[i],cnt);
suf[n+1]=ref[1]?0:1;
}
int main()
{
scanf("%lld",&p);
char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);A[++n]=c-'0',c=gc());
m=read(), size=sqrt(n);
if(p==2||p==5) {Spec(); return 0;}
for(int i=1; i<=m; ++i)
q[i].l=read(),q[i].r=read()+1,q[i].id=i;//q:r+1
LL pw10=1;//longlong!
for(int i=n; i; --i)
suf[i]=(A[i]*pw10%p+suf[i+1])%p, pw10=pw10*10%p;
// if(p>P) Discrete();//这个if?
Discrete();
std::sort(q+1,q+1+m);
// if(p==2||p==5) Spec();
// else Normal();
Normal();
for(int i=1; i<=m; ++i) printf("%lld\n",Ans[i]);
return 0;
}
BZOJ.4542.[HNOI2016]大数(莫队)的更多相关文章
- bzoj 4542: [Hnoi2016]大数 (莫队)
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
- 【BZOJ4542】[Hnoi2016]大数 莫队
[BZOJ4542][Hnoi2016]大数 Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个 ...
- BZOj 4540: [Hnoi2016]序列 [莫队 st表 预处理]
4540: [Hnoi2016]序列 题意:询问区间所有子串的最小值的和 不强制在线当然上莫队啦 但是没想出来,因为不知道该维护当前区间的什么信息,维护前后缀最小值的话不好做 想到单调栈求一下,但是对 ...
- [BZOJ4542] [Hnoi2016] 大数 (莫队)
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
- BZOJ.4540.[HNOI2016]序列(莫队/前缀和/线段树 单调栈 RMQ)
BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\( ...
- BZOJ 4540 [Hnoi2016]序列 | 莫队 详细题解
传送门 BZOJ 4540 题解 --怎么说呢--本来想写线段树+矩阵乘法的-- --但是嘛--yali的机房太热了--困--写不出来-- 于是弃疗,写起了莫队.(但是我连莫队都想不出来!) 首先用单 ...
- bzoj4542 [Hnoi2016]大数 莫队+同余
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4542 题解 我们令 \(f_i\) 表示从 \(i\) 到 \(n\) 位组成的数 \(\bm ...
- bzoj 4542: [Hnoi2016]大数
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345 小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
- 洛谷P3245 [HNOI2016]大数(莫队)
题意 题目链接 Sol 莫队板子题.. 维护出每个位置开始的字符串\(mod P\)的结果,记为\(S_i\) 两个位置\(l, r\)满足条件当且仅当\(S_l - S_r = 0\),也就是\(S ...
随机推荐
- 【vim】删除标记内部的文字 di[标记]
当我开始使用 Vim 时,一件我总是想很方便做的事情是如何轻松的删除方括号或圆括号里的内容.转到开始的标记,然后使用下面的语法: di[标记] 比如,把光标放在开始的圆括号上,使用下面的命令来删除圆括 ...
- How to Repair GRUB2 When Ubuntu Won’t Boot
Ubuntu and many other Linux distributions use the GRUB2 boot loader. If GRUB2 breaks—for example, if ...
- ERROR 1067 (42000): Invalid default value for 'created_time'【转】
执行表增加字段语句报错 mysql> ALTER TABLE ha_question ADD COLUMN question_number INT; ERROR (): Invalid defa ...
- php- post表单 input name属性的问题
<input type='text' style='width: 99px' name='deptNo'></td> name为字符串的时候传递的是单个字符串 <inp ...
- R-TREE
原文地址:http://blog.csdn.net/sunmenggmail/article/details/8122743 1984年,加州大学伯克利分校的Guttman发表了一篇题为“R-tree ...
- zabbix3.0.4导入中文模板后乱码问题处理
通过yum安装方式部署了zabbix3.0.4监控服务器,配置过程中发现当导入的模板中有中文时,图中的中文会变成方块 如下图所示: 这个问题是由于zabbix的web端没有中文字库,我们最需要把中文字 ...
- centos系统初始化流程及实现系统裁剪
Linux系统的初始化流程: POST:ROM+RAM BIOS: Boot Sequence MBR: 446:bootloader 64: 分区表 2: 5A kernel文件:基本磁盘分区 /s ...
- Linux中 Lua 访问Sql Server的配置方法
一.背景说明: 通过lua脚本实现对SQL Server数据库的操作. 二.具体设定: 安装流程图:如果是使用Lua连接SQL Server,从上到下则需要安装lua -> luaSQL-ODB ...
- S5PV210 NAND Flash
NAND Flash 关于NAND FlashS5PV210的NAND Flash控制器有如下特点:1) 支持512byte,2k,4k,8k的页大小2) 通过各种软件模式来进行NAND Flash的 ...
- Account的简单架构
前几天,有园友私下问我,博客中的AccountDemo后端架构为什么是那样的,是不是分层太多太冗余,故这里简单介绍下.先看解决方案工程截图: 每个工程的含义,见https://www.cnblogs. ...