Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.

An example is the root-to-leaf path 1->2->3 which represents the number 123.

Find the total sum of all root-to-leaf numbers.

Note: A leaf is a node with no children.

Example:

Input: [1,2,3]
1
/ \
2 3
Output: 25
Explanation:
The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.
Therefore, sum = 12 + 13 = 25.

Example 2:

Input: [4,9,0,5,1]
4
/ \
9 0
 / \
5 1
Output: 1026
Explanation:
The root-to-leaf path 4->9->5 represents the number 495.
The root-to-leaf path 4->9->1 represents the number 491.
The root-to-leaf path 4->0 represents the number 40.
Therefore, sum = 495 + 491 + 40 = 1026. 思路就是DFS, 然后将node 和当前的path组成的数字string一起append进入stack, 判断如果是leaf, 将num转换为int加入在ans中. 1. Constraints
1)None => 0 2. Ideas
DFS T: O(n) S; O(n) 3. Code
class Solution:
def sumRootLeaf(self, root):
if not root: return 0
stack, ans = [(root, str(root.val))], 0
while stack:
node, num = stack.pop()
if not node.right and not node.left:
ans += int(num)
if node.left:
stack.append((node.left, num + str(node.left.val)))
if node.right:
stack.append((node.right, num + str(node.right.val)))
return ans

[LeetCode] 129. Sum Root to Leaf Numbers_Medium tag: DFS的更多相关文章

  1. [LeetCode] 129. Sum Root to Leaf Numbers 求根到叶节点数字之和

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  2. leetcode@ [129] Sum Root to Leaf Numbers (DFS)

    https://leetcode.com/problems/sum-root-to-leaf-numbers/ Given a binary tree containing digits from 0 ...

  3. leetcode 129. Sum Root to Leaf Numbers ----- java

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  4. Leetcode#129 Sum Root to Leaf Numbers

    原题地址 二叉树的遍历 代码: vector<int> path; int sumNumbers(TreeNode *root) { if (!root) ; ; path.push_ba ...

  5. [LeetCode] 129. Sum Root to Leaf Numbers 解题思路

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  6. Java for LeetCode 129 Sum Root to Leaf Numbers

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  7. LeetCode 129. Sum Root to Leaf Numbers 动态演示

    树的数值为[0, 9], 每一条从根到叶子的路径都构成一个整数,(根的数字为首位),求所有构成的所有整数的和 深度优先搜索,通过一个参数累加整数 class Solution { public: vo ...

  8. [LeetCode]129. Sum Root to Leaf Numbers路径数字求和

    DFS的标准形式 用一个String记录路径,最后判断到叶子时加到结果上. int res = 0; public int sumNumbers(TreeNode root) { if (root== ...

  9. 129. Sum Root to Leaf Numbers(Tree; DFS)

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

随机推荐

  1. datagrid---columns列

    { field:"city", //字段名,从后台传来的要一致 title:"城市",//列的标题文字. width:,//列的宽度 formatter:fun ...

  2. ubuntu经常断网、掉线、上不去网的原因

    方案一: ubuntu经常断网.掉线.上不去网的原因,很可能是因为IPv6的关系,Ubuntu默认开启IPv6,在“设置--wifi--齿轮图标”中关掉就可以了. 经我环境测试,此方法无效 方案二: ...

  3. [No000014C]让大脑高效运转的24个技巧

    内容来译自David Rock “Your Brain at Work” and Nir Eyal, NirAndFar.com. Nir Eyal 是<上瘾>这本书的作者. 如何抓住转瞬 ...

  4. 【每日一题】 UVA - 1588 Kickdown

    题意:uva的题,每道都是有背景的orz,都是阅读理解 题解:暴力模拟,拿着短的那个串,对着长的一格一格往左滑,每滑一格暴力扫一遍.然后再从头往右滑,我这里wa了三发,wa了后习惯性瞎改,改到后来循环 ...

  5. Only the storage referenced by ptr is modified. No other storage locations are accessed by the call.

    free - C++ Reference http://www.cplusplus.com/reference/cstdlib/free/ Data races Only the storage re ...

  6. 【编译原理】c++实现自下而上语法分析器

    写在前面:本博客为本人原创,严禁任何形式的转载!本博客只允许放在博客园(.cnblogs.com),如果您在其他网站看到这篇博文,请通过下面这个唯一的合法链接转到原文! 本博客全网唯一合法URL:ht ...

  7. [administrative] windows 下制作USB启动盘的工具

    arch魔教的文档:  https://wiki.archlinux.org/index.php/USB_flash_installation_media windows 下的 dd: https:/ ...

  8. 查找->动态查找表->平衡二叉树

    文字描述 平衡二叉树(Balanced Binary Tree或Height-Balanced Tree) 因为是俄罗斯数学家G.M.Adel’son-Vel’skii和E.M.Landis在1962 ...

  9. webstorm背景颜色更改

    一.file --> settings 二.editor-->color scheme  然后右边下拉选择 三.apply -- > ok

  10. vue的生命周期(lifecycle)

    这边转载一篇文章,个人认为写的不错,代码举了个例子很生动. https://segmentfault.com/a/1190000010336178