Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.

An example is the root-to-leaf path 1->2->3 which represents the number 123.

Find the total sum of all root-to-leaf numbers.

Note: A leaf is a node with no children.

Example:

Input: [1,2,3]
1
/ \
2 3
Output: 25
Explanation:
The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.
Therefore, sum = 12 + 13 = 25.

Example 2:

Input: [4,9,0,5,1]
4
/ \
9 0
 / \
5 1
Output: 1026
Explanation:
The root-to-leaf path 4->9->5 represents the number 495.
The root-to-leaf path 4->9->1 represents the number 491.
The root-to-leaf path 4->0 represents the number 40.
Therefore, sum = 495 + 491 + 40 = 1026. 思路就是DFS, 然后将node 和当前的path组成的数字string一起append进入stack, 判断如果是leaf, 将num转换为int加入在ans中. 1. Constraints
1)None => 0 2. Ideas
DFS T: O(n) S; O(n) 3. Code
class Solution:
def sumRootLeaf(self, root):
if not root: return 0
stack, ans = [(root, str(root.val))], 0
while stack:
node, num = stack.pop()
if not node.right and not node.left:
ans += int(num)
if node.left:
stack.append((node.left, num + str(node.left.val)))
if node.right:
stack.append((node.right, num + str(node.right.val)))
return ans

[LeetCode] 129. Sum Root to Leaf Numbers_Medium tag: DFS的更多相关文章

  1. [LeetCode] 129. Sum Root to Leaf Numbers 求根到叶节点数字之和

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  2. leetcode@ [129] Sum Root to Leaf Numbers (DFS)

    https://leetcode.com/problems/sum-root-to-leaf-numbers/ Given a binary tree containing digits from 0 ...

  3. leetcode 129. Sum Root to Leaf Numbers ----- java

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  4. Leetcode#129 Sum Root to Leaf Numbers

    原题地址 二叉树的遍历 代码: vector<int> path; int sumNumbers(TreeNode *root) { if (!root) ; ; path.push_ba ...

  5. [LeetCode] 129. Sum Root to Leaf Numbers 解题思路

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  6. Java for LeetCode 129 Sum Root to Leaf Numbers

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  7. LeetCode 129. Sum Root to Leaf Numbers 动态演示

    树的数值为[0, 9], 每一条从根到叶子的路径都构成一个整数,(根的数字为首位),求所有构成的所有整数的和 深度优先搜索,通过一个参数累加整数 class Solution { public: vo ...

  8. [LeetCode]129. Sum Root to Leaf Numbers路径数字求和

    DFS的标准形式 用一个String记录路径,最后判断到叶子时加到结果上. int res = 0; public int sumNumbers(TreeNode root) { if (root== ...

  9. 129. Sum Root to Leaf Numbers(Tree; DFS)

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

随机推荐

  1. 有重复行,查询时只保留最新一行的sql

    一.表结构如下:表名test 二.sql select temp.* from (select test.*, row_number() over(partition by obd_code orde ...

  2. C# MVC+EF—结构搭建

    近期做了MVC+EF的项目,现在项目完结了,抽个时间写个小DOM总结一下,顺便加深理解. 一.新建MVC项目,结构是这样的

  3. uploadify中文开发文档,解决php多图上传

    图片上传好用插件有,比如 uploadify  ueditor html5的各种ajax上传插件,大部分都是异步,返回只是true之类,有些时候需要上传图片需要一起上传,其实可以通过操作流程来避免这个 ...

  4. [No0000ED]IPSec策略之管理

    IP安全策略 @echo off :again set num= set ippolicyname= set ismmpfs= set keytime= set keyexpress= set new ...

  5. ROADS POJ - 1724 约束最短路 暴搜 加剪枝

    http://poj.org/problem?id=1724 题意:最短路的模板,不过每条边加上一个费用,要求总费用不超过k 题解:不能用dijkstra ,直接暴力,dfs维护len和cost. 普 ...

  6. CentOS7初始化mysql库报错

    在centos7上安装mysql数据库,进行数据库初始化工作时,报错缺少data::dumper库文件,如下: 解决办法:安装autoconf库后重新初始化即可解决. yum-y install au ...

  7. MySQL获取分组后的TOP 1和TOP N记录-转

    有时会碰到一些需求,查询分组后的最大值,最小值所在的整行记录或者分组后的top n行的记录,在一些别的数据库可能有窗口函数可以方面的查出来,但是MySQL没有这些函数,没有直接的方法可以查出来,可通过 ...

  8. AFNetworking的缓存使用

    + (NSURLCache *)defaultURLCache { // It's been discovered that a crash will occur on certain version ...

  9. iOS-方法之+ initialize 与 +load

    Objective-C 有两个神奇的方法:+load 和 +initialize,这两个方法在类被使用时会自动调用.但是两个方法的不同点会导致应用层面上性能的显著差异. 一.+ initialize ...

  10. /etc/passwd- 和/etc/shadow-文件

    今天偶尔看到系统里有/etc/passwd- 和/etc/shadow-文件,经测试只要执行过系统的用户操作命令就会产生,如deluser.passwd.chpasswd.adduser等命令,应该是 ...