『PyTorch』第三弹_自动求导
torch.autograd 包提供Tensor所有操作的自动求导方法。
数据结构介绍
autograd.Variable 这是这个包中最核心的类。 它包装了一个Tensor,并且几乎支持所有的定义在其上的操作。一旦完成了你的运算,你可以调用 .backward()来自动计算出所有的梯度,Variable有三个属性:
访问原始的tensor使用属性.data;
关于这一Variable的梯度则集中于 .grad;
.creator反映了创建者,标识了是否由用户使用.Variable直接创建(None)。
import torch
from torch.autograd import Variable '''求导数''' x = Variable(torch.ones(2,2),requires_grad=True)
y = x + 2
print(x.creator) # None,用户直接创建没有creater属性
print(y.creator) # <torch.autograd._functions.basic_ops.AddConstant object at 0x7fb9b4d4b208>
返回:
None
<torch.autograd._functions.basic_ops.AddConstant object at 0x7fb9b4d4b208>
求导运算
如果你想要进行求导计算,你可以在Variable上调用.backward()。
如果Variable是一个标量(例如它包含一个单元素数据),你无需对backward()指定任何参数
z = y*y*3
out = z.mean() out.backward() print(x,y,z)
print(x.grad) # 输出对out对x求倒结果
print(y.grad) # y不是自动求导变量Variable containing:
1 1
1 1
[torch.FloatTensor of size 2x2]
Variable containing:
3 3
3 3
[torch.FloatTensor of size 2x2]
Variable containing:
27 27
27 27
[torch.FloatTensor of size 2x2] Variable containing:
4.5000 4.5000
4.5000 4.5000
[torch.FloatTensor of size 2x2] None最终得出的结果应该是一个全是4.5的矩阵。设置输出的变量为o。我们通过这一公式来计算:
,
,
,因此,
,最后有
如果它有更多的元素(矢量),你需要指定一个和tensor的形状匹配的grad_output参数(y在指定方向投影对x的导数)
x = torch.randn(3)
x = Variable(x, requires_grad = True)
y = x * 2
while y.data.norm() < 1000:
y = y * 2
gradients = torch.FloatTensor([0.1, 1.0, 0.0001])
y.backward(gradients)
x.gradVariable containing:
-0.8143
-1.5852
-0.8598
[torch.FloatTensor of size 3] Variable containing:
-1.6286
-3.1704
-1.7195
[torch.FloatTensor of size 3] 3.9573325720437613
Variable containing:
51.2000
512.0000
0.0512
[torch.FloatTensor of size 3]测试传入向量的意义:
x = torch.randn(3)
x = Variable(x,requires_grad=True)
y = x*2 gradients = torch.FloatTensor([0.5,0.5,1])
y.backward(gradients) # 沿着某方向的梯度
print(x.grad) # Variable containing:
#
#
#
# [torch.FloatTensor of size 3]
x = torch.randn(3)
x = Variable(x,requires_grad=True)
y = x*2 gradients = torch.FloatTensor([1,1,1])
y.backward(gradients) # 沿着某方向的梯度
print(x.grad) # Variable containing:
#
#
#
# [torch.FloatTensor of size 3]
『PyTorch』第三弹_自动求导的更多相关文章
- 『PyTorch』第三弹重置_Variable对象
『PyTorch』第三弹_自动求导 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Varibale包含三个属性: data ...
- 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下
『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import t ...
- 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上
总结一下相关概念: torch.Tensor - 一个近似多维数组的数据结构 autograd.Variable - 改变Tensor并且记录下来操作的历史记录.和Tensor拥有相同的API,以及b ...
- 『PyTorch』第十弹_循环神经网络
RNN基础: 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 TensorFlow RNN: 『TensotFlow』基础RNN网络分类问题 『TensotFlow』基础R ...
- 『PyTorch』第五弹_深入理解autograd_下:函数扩展&高阶导数
一.封装新的PyTorch函数 继承Function类 forward:输入Variable->中间计算Tensor->输出Variable backward:均使用Variable 线性 ...
- 『PyTorch』第五弹_深入理解autograd_上:Variable属性方法
在PyTorch中计算图的特点可总结如下: autograd根据用户对variable的操作构建其计算图.对变量的操作抽象为Function. 对于那些不是任何函数(Function)的输出,由用户创 ...
- 『PyTorch』第五弹_深入理解Tensor对象_下:从内存看Tensor
Tensor存储结构如下, 如图所示,实际上很可能多个信息区对应于同一个存储区,也就是上一节我们说到的,初始化或者普通索引时经常会有这种情况. 一.几种共享内存的情况 view a = t.arang ...
- 『PyTorch』第五弹_深入理解autograd_中:Variable梯度探究
查看非叶节点梯度的两种方法 在反向传播过程中非叶子节点的导数计算完之后即被清空.若想查看这些变量的梯度,有两种方法: 使用autograd.grad函数 使用hook autograd.grad和ho ...
- 『PyTorch』第五弹_深入理解Tensor对象_中下:数学计算以及numpy比较_&_广播原理简介
一.简单数学操作 1.逐元素操作 t.clamp(a,min=2,max=4)近似于tf.clip_by_value(A, min, max),修剪值域. a = t.arange(0,6).view ...
随机推荐
- Golang踩坑录 两种方式来读取文件一行所导致的问题
前两天零零碎碎看完了golang的基础,想着找个小项目练练手,可是出现了一个十分棘手的问题 我要做的东西是网站路径爆破 所以我会从文本字典中把一行行路径读取然后与域名拼接,但是我在跑起程序后出现了问题 ...
- sql -- 移除数据中的换行符和回车符
https://blog.csdn.net/jcx5083761/article/details/40185795 --移除回车符 update master_location SET street_ ...
- Twitter开发2
There are different API families The standard (free) Twitter APIs consist of REST APIs and Streaming ...
- hihoCoder 1116 计算(线段树)
http://hihocoder.com/problemset/problem/1116 题意: 思路: 用线段树解决,每个节点需要设置4个变量,sum记录答案,all记录整个区间的乘积,pre记录该 ...
- 【Python】图形界面
# [[图形界面]]'''Python支持多种图形界面的第三方库,包括TkwxWidgetsQtGTK但是Python自带的库是支持Tk的Tkinter,无需安装任何包,可直接使用.''' #[Tki ...
- 封装fetch的使用(包含超时处理)
// 1: 传统fetch操作 fetch('http://facebook.github.io/react-native/movies.json') .then((response) => r ...
- React创建组件的三种方式及其区别
内容转载于http://www.cnblogs.com/wonyun/p/5930333.html React推出后,出于不同的原因先后出现三种定义react组件的方式,殊途同归; 具体的三种方式: ...
- BaseEditor
using UnityEngine;using System.Collections.Generic;using UnityEditor;using System.Text;using System. ...
- P2002 消息扩散
其实这道题蛮水的 思路: 根据题意,他说有环,自然想到要用tarjan,后面就很简单了: 缩完点之后重新建图,开一个inin数组表示该点的入度是多少(psps:该点表示缩完点之后的大点): 最后统计一 ...
- Error: Program type already present: okhttp3.Authenticator$1
在app中的build.gradle中加入如下代码, configurations { all*.exclude group: 'com.google.code.gson' all*.exclude ...