RealPhobia

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 938    Accepted Submission(s): 435

Problem Description
Bert is a programmer with a real fear of floating point arithmetic. Bert has quite successfully used rational numbers to write his programs but he does not like it when the denominator grows large. Your task is to help Bert by writing a program that decreases the denominator of a rational number, whilst introducing the smallest error possible. For a rational number A/B, where B > 2 and 0 < A < B, your program needs to identify a rational number C/D such that:
1. 0 < C < D < B, and
2. the error |A/B - C/D| is the minimum over all possible values of C and D, and
3. D is the smallest such positive integer.
 
Input
The input starts with an integer K (1 <= K <= 1000) that represents the number of cases on a line by itself. Each of the following K lines describes one of the cases and consists of a fraction formatted as two integers, A and B, separated by “/” such that:
1. B is a 32 bit integer strictly greater than 2, and
2. 0 < A < B
 
Output
For each case, the output consists of a fraction on a line by itself. The fraction should be formatted as two integers separated by “/”.
 
Sample Input
3
1/4
2/3
13/21
 
Sample Output
1/3
1/2
8/13
 
Source
 

    | A/B - C/D |= minn   <=>  | AD - BC| / BD =minn

    如果AB可以约分的话直接约分就是答案。否则说明 gcd(A,B)=1, 我们有 A*D+B*C = gcd(A,B) = 1,原分子加了绝对值,有两种情况

D>0,C<0 或者是 D<0,C>0  ,解完之后对D分正负讨论一下那个使得分母更大就选那个,分子已经是1了。

  因为D<B,所以记得%B,正负分别对应唯一的一个解。

  

 #include<iostream>
#include<cstdio>
using namespace std;
#define LL long long
#define mp make_pair
#define pb push_back
#define inf 0x3f3f3f3f
void exgcd(LL a,LL b,LL &d,LL &x,LL &y){
if(!b){d=a;x=;y=;}
else{exgcd(b,a%b,d,y,x);y-=x*(a/b);}
}
int main(){
LL a,b,d,x,y;
int t;
cin>>t;
while(t--){
scanf("%lld/%lld",&a,&b);
exgcd(a,b,d,x,y);
if(d!=){
printf("%lld/%lld\n",a/d,b/d);
}
else{
LL d1,d2,c1,c2;
d1=(x%b+b)%b,c1=-(-a*d1)/b;
d2=-(x%b-b)%b,c2=(+a*d2)/b;
if(d1>d2){
printf("%lld/%lld\n",c1,d1);
}
else{
printf("%lld/%lld\n",c2,d2);
}
}
}
return ;
}

hdu-4180-exgcd的更多相关文章

  1. HDU 1211 EXGCD

    EXGCD的模板水题 RSA算法给你两个大素数p,q定义n=pq,F(n)=(p-1)(q-1) 找一个数e 使得(e⊥F(n)) 实际题目会给你e,p,q计算d,$de \mod F(n) = 1$ ...

  2. hdu 4180

    题意; 求接近规定 分数 的 最大分数用到 farey 数列的第二条性质 1 #include <iostream> #include<stdio.h> using names ...

  3. HDU 5377 (Exgcd + 原根)

    转载自:大牛 知道一个定理了 a ^ x = y (mod p) ===>>   logd(a) * x = logd(y) (mod O(p) )      d 为 p 的 原根,  O ...

  4. HDU 4180 扩展欧几里得

    RealPhobia Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  5. HDU 2239 polya计数 欧拉函数

    这题模数是9937还不是素数,求逆元还得手动求. 项链翻转一样的算一种相当于就是一种类型的置换,那么在n长度内,对于每个i其循环节数为(i,n),但是由于n<=2^32,肯定不能直接枚举,所有考 ...

  6. A/B HDU - 1576 (exgcd)

    要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1). Input数据的第一行是一个T,表示有T组数据. 每组数据有两 ...

  7. HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】

    Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number o ...

  8. 题解报告:hdu 1576 A/B(exgcd、乘法逆元+整数快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n ...

  9. HDU 5768:Lucky7(中国剩余定理 + 容斥原理)

    http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Problem Description   When ?? was born, seven ...

  10. HDU 2669 第六周 I题

    Description The Sky is Sprite.  The Birds is Fly in the Sky.  The Wind is Wonderful.  Blew Throw the ...

随机推荐

  1. Netty Reactor 线程模型笔记

    引用: https://www.cnblogs.com/TomSnail/p/6158249.html https://www.cnblogs.com/heavenhome/articles/6554 ...

  2. EPPlus实战篇——Excel读取

    .net core 项目 可以从excel读取任何类型(T)的数据,只要T中的field的[Display(Name = "1233")]中的name==excel column ...

  3. eclipse创建maven web项目工程步骤示例

    参考链接:https://www.cnblogs.com/noteless/p/5213075.html 需求表均同springmvc案例 此处只是使用maven 注意,以下所有需要建立在你的ecli ...

  4. codeforces 768E Game of Stones

    题目链接:http://codeforces.com/problemset/problem/768/E NIM游戏改版:对于任意一堆,拿掉某个次数最多只能一次. 对于一堆石头数量为$X$.找到一个最小 ...

  5. list转化为json数组

    今天做项目,用Thrift获取数据,在servlet里面获取的是数组,但是通过Ajax传输到js文件里是一个list,我获取长度失败,这个时候需要将list转化为json数组,我们可以通过eval() ...

  6. 将.db文件导入SQLServer2008数据库

    最近要做一个项目,需要连接数据库,给我的数据文件是sqlite,我需要将数据导入到SQLServer数据库 需要借助一个软件:DBDBMigration 页面最上方的选择框内,先选择数据文件类型,这里 ...

  7. Digits of Factorial LightOJ - 1045

    题目就不再发了,大致意思就是给你一个十进制数n,算出阶乘后转换成K进制的数,你来算一下它的位数. 坑点在哪呢,就是这个数可能算阶乘的时候没放弄了,比如1000000,做过最多单算阶乘的题也就是让你算到 ...

  8. The folder is already a source folder

    不知为啥,创建了一个maven项目后,发现只有src/main/resources这个资源文件夹,然后,右键新建 Source Folder 时提示 “The folder is already a ...

  9. RxJava + Retrofit

    一.添加依赖 compile 'io.reactivex:rxandroid:1.2.0' compile 'io.reactivex:rxjava:1.1.5' compile 'com.googl ...

  10. JS _proto_ 和 prototype

    转载自:https://www.cnblogs.com/wuwenjie/p/5433776.html 大佬讲得很明白,自己也收藏一下! 初学javascript的时候也跟题主一样搞不清楚,自己好好总 ...