RealPhobia

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 938    Accepted Submission(s): 435

Problem Description
Bert is a programmer with a real fear of floating point arithmetic. Bert has quite successfully used rational numbers to write his programs but he does not like it when the denominator grows large. Your task is to help Bert by writing a program that decreases the denominator of a rational number, whilst introducing the smallest error possible. For a rational number A/B, where B > 2 and 0 < A < B, your program needs to identify a rational number C/D such that:
1. 0 < C < D < B, and
2. the error |A/B - C/D| is the minimum over all possible values of C and D, and
3. D is the smallest such positive integer.
 
Input
The input starts with an integer K (1 <= K <= 1000) that represents the number of cases on a line by itself. Each of the following K lines describes one of the cases and consists of a fraction formatted as two integers, A and B, separated by “/” such that:
1. B is a 32 bit integer strictly greater than 2, and
2. 0 < A < B
 
Output
For each case, the output consists of a fraction on a line by itself. The fraction should be formatted as two integers separated by “/”.
 
Sample Input
3
1/4
2/3
13/21
 
Sample Output
1/3
1/2
8/13
 
Source
 

    | A/B - C/D |= minn   <=>  | AD - BC| / BD =minn

    如果AB可以约分的话直接约分就是答案。否则说明 gcd(A,B)=1, 我们有 A*D+B*C = gcd(A,B) = 1,原分子加了绝对值,有两种情况

D>0,C<0 或者是 D<0,C>0  ,解完之后对D分正负讨论一下那个使得分母更大就选那个,分子已经是1了。

  因为D<B,所以记得%B,正负分别对应唯一的一个解。

  

 #include<iostream>
#include<cstdio>
using namespace std;
#define LL long long
#define mp make_pair
#define pb push_back
#define inf 0x3f3f3f3f
void exgcd(LL a,LL b,LL &d,LL &x,LL &y){
if(!b){d=a;x=;y=;}
else{exgcd(b,a%b,d,y,x);y-=x*(a/b);}
}
int main(){
LL a,b,d,x,y;
int t;
cin>>t;
while(t--){
scanf("%lld/%lld",&a,&b);
exgcd(a,b,d,x,y);
if(d!=){
printf("%lld/%lld\n",a/d,b/d);
}
else{
LL d1,d2,c1,c2;
d1=(x%b+b)%b,c1=-(-a*d1)/b;
d2=-(x%b-b)%b,c2=(+a*d2)/b;
if(d1>d2){
printf("%lld/%lld\n",c1,d1);
}
else{
printf("%lld/%lld\n",c2,d2);
}
}
}
return ;
}

hdu-4180-exgcd的更多相关文章

  1. HDU 1211 EXGCD

    EXGCD的模板水题 RSA算法给你两个大素数p,q定义n=pq,F(n)=(p-1)(q-1) 找一个数e 使得(e⊥F(n)) 实际题目会给你e,p,q计算d,$de \mod F(n) = 1$ ...

  2. hdu 4180

    题意; 求接近规定 分数 的 最大分数用到 farey 数列的第二条性质 1 #include <iostream> #include<stdio.h> using names ...

  3. HDU 5377 (Exgcd + 原根)

    转载自:大牛 知道一个定理了 a ^ x = y (mod p) ===>>   logd(a) * x = logd(y) (mod O(p) )      d 为 p 的 原根,  O ...

  4. HDU 4180 扩展欧几里得

    RealPhobia Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  5. HDU 2239 polya计数 欧拉函数

    这题模数是9937还不是素数,求逆元还得手动求. 项链翻转一样的算一种相当于就是一种类型的置换,那么在n长度内,对于每个i其循环节数为(i,n),但是由于n<=2^32,肯定不能直接枚举,所有考 ...

  6. A/B HDU - 1576 (exgcd)

    要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1). Input数据的第一行是一个T,表示有T组数据. 每组数据有两 ...

  7. HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】

    Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number o ...

  8. 题解报告:hdu 1576 A/B(exgcd、乘法逆元+整数快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n ...

  9. HDU 5768:Lucky7(中国剩余定理 + 容斥原理)

    http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Problem Description   When ?? was born, seven ...

  10. HDU 2669 第六周 I题

    Description The Sky is Sprite.  The Birds is Fly in the Sky.  The Wind is Wonderful.  Blew Throw the ...

随机推荐

  1. HDU 5919 Sequence II(主席树+区间不同数个数+区间第k小)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=5919 题意:给出一串序列,每次给出区间,求出该区间内不同数的个数k和第一个数出现的位置(将这些位置组 ...

  2. 什么是可哈希的(hashable)

    如果一个对象在自己的生命周期中有一哈希值(hash value)是不可改变的,那么它就是可哈希的(hashable)的,因为这些数据结构内置了哈希值,每个可哈希的对象都内置了__hash__方法,所以 ...

  3. SpringBoot中加密com.github.ulisesbocchio

    Jasypt Spring Boot 为 Spring Boot 项目中的属性源(property sources)提供加密支持. 有三种方法可以在项目中集成 jasypt-spring-boot: ...

  4. idea创建web聚合工程(2)

    参考文档: intelj idea 创建聚合项目(典型web项目,包括子项目util.dao.service) 使用IntelliJ IDEA创建Maven聚合工程.创建resources文件夹.ss ...

  5. aar的使用(module或者library)

    引入: 1. android studio正常的module引用aar文件需要配置如下: ① 在module的build.gradle的android节点下 repositories { flatDi ...

  6. P359 usestock2.cpp

    IDE Qt Creator 4.0.3 stock.h #ifndef STOCK_H #define STOCK_H #include <string> class Stock //类 ...

  7. Python pickle使用

    2019-01-15 10:04:32 用于序列化的两个模块 json:用于字符串和Python数据类型间进行转换 pickle: 用于python特有的类型和python的数据类型间进行转换 jso ...

  8. 记录结果再利用的"动态规划"

    2018-09-24 15:01:37 动态规划(DP: Dynamic Programming)是算法设计方法之一,在程序设计竞赛中经常被选作题材.在此,我们考察一些经典的DP问题,来看看DP究竟是 ...

  9. 子序列的按位或 Bitwise ORs of Subarrays

    2018-09-23 19:05:20 问题描述: 问题求解: 显然的是暴力的遍历所有的区间是不可取的,因为这样的时间复杂度为n^2级别的,对于规模在50000左右的输入会TLE. 然而,最后的解答也 ...

  10. nodejs使用log4js记录日志

    log4j是java里面最好用的日志记录插件,在.net上面也有移植log4j.net.同样也移植到了nodejs里面,多的不说,把自测通过的代码粘出来吧. var log4js = require( ...