bzoj

洛谷

这题意是不是不太清楚

真正题意:求$$f_i=\sum_{j=1}^{\lfloor iA \rfloor} \frac{M_iM_j}{i-j}$$

似乎只能\(O(n*\lfloor n*A \rfloor)\)求

但是,注意只要结果的相对误差不超过 5% 即可

于是对于较大的\(i\)来说,\(f_i\)可以近似的看为\(M_i*\frac{\sum_{j=1}^{\lfloor i*A \rfloor} M_j}{i-\frac{\lfloor i*A \rfloor}{2}}\)

因为\(A\)是一个不超过0.35的实数,并且\(i\)较大时\(i-j\)也会比较大,所以近似一下可以接受

至于为什么,emmm你猜

#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define inf 2099999999
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define db double
#define eps (1e-5) using namespace std;
const int N=100000+10;
il LL rd()
{
re LL x=0,w=1;re char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,nn;
db a,m[N],ans; int main()
{
n=rd();scanf("%lf",&a);
for(int i=1;i<=n;i++) scanf("%lf",&m[i]);
nn=min(3000,n);
for(int i=1;i<=nn;i++)
{
int mm=(int)(i*a+eps);
ans=0;
for(int j=1;j<=mm;j++) ans+=m[j]/(db)(i-j);
ans*=m[i];
printf("%.8lf\n",ans);
}
db tm=0;
for(int i=nn+1,la=1;i<=n;i++)
{
int mm=(int)(i*a+eps);
while(la<=mm) tm+=m[la++];
ans=m[i]*tm/((db)i-(db)mm/2);
printf("%.8lf\n",ans);
}
return 0;
}

luogu P3198 [HNOI2008]遥远的行星的更多相关文章

  1. P3198 [HNOI2008]遥远的行星

    传送门 发现 $A$ 不大,又允许较大的误差,考虑乱搞 考虑求出每个位置的答案,因为有 $1e5$ 个位置,所以每个位置差不多可以计算 $100$ 次贡献 所以把每个可以贡献的位置尽量均匀分成 $10 ...

  2. bzoj1011 [HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2480  Solved ...

  3. 【bzoj1011】[HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 3711  Solved ...

  4. BZOJ 1011 [HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2559  Solved ...

  5. 1011: [HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2241  Solved ...

  6. BZOJ 1011 [HNOI2008]遥远的行星 (误差分析)

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 4974  Solved ...

  7. BZOJ1011 [HNOI2008]遥远的行星 【奇技淫巧】

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special Judge Submit: 5058  Solve ...

  8. [HNOI2008]遥远的行星

    题目描述 直线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量,故直观上说每颗行 ...

  9. BZOJ1011:[HNOI2008]遥远的行星(乱搞)

    Description 直线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量, ...

随机推荐

  1. BZOJ3237 AHOI2013连通图(线段树分治+并查集)

    把查询看做是在一条时间轴上.那么每条边都有几段存在时间.于是线段树分治就好了. 然而在bzoj上t掉了,不知道是常数大了还是写挂了. 以及brk不知道是啥做数组名过不了编译. #include< ...

  2. Sublime Text3配置及控制台乱码[cmd杀死进程乱码/编译文件乱码]解决方法

    [NodeJs] 1.安装 http://nodejs.cn/download/ 2.安装过程省略(因为已经安装过了) 和平时安装软件没区别 3.配置环境 计算机--->属性-->高级系统 ...

  3. Sql 重置自动增长列

    Sql 重置自动增长列: dbcc checkident(表名, reseed, 0) 使用的情况,一般出现在主外键关联表,导致无法 truncate 只能delete的情况. 此时我们可能会需要重置 ...

  4. (转)二分图匹配匈牙利算法与KM算法

    匈牙利算法转自于: https://blog.csdn.net/dark_scope/article/details/8880547 匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名 ...

  5. Linux开机自动挂载存储的两种方式

    登录服务器,给查看了下,发现确实是没有自动加载,df -h只能显示本地硬盘的分区,fdisk -l 还是能看到存储空间,这说明这个服务器连接存储是木有问题的. 输入history | grep mou ...

  6. linux运维、架构之路-linux文件属性

    1.查看文件属性 ls -lhi 文件属性详细说明 1. 第一列: inode索引节点编号 2. 第二列:文件类型及权限 3. 第三列:硬链接数 4. 第四列:文件或目录所属的用户,即文件的所有者 5 ...

  7. 自学Linux Shell12.2-test命令

    点击返回 自学Linux命令行与Shell脚本之路 12.2-test命令 if-then语句不能测试命令退出状态码之外的条件,test命令提供了在if-then语句中测试不同条件的途径. 如果tes ...

  8. py3+urllib+re,轻轻松松爬取双色球最近100期中奖号码

    通过页面源码,发现使用正则表达式可以很方便的获取到我们需要的数据,最后循环写入txt文件. (\d{2})表示两位数字 [\s\S]表示匹配包括“\r\n”在内的任何字符,匹配红球和蓝球之间的内容 具 ...

  9. linux 用户及用户组管理

    主要分为以下三部分: 1. 用户账号的添加.修改及删除 2. 用户口令的管理 3. 用户组管理 用户管理 1.添加新用户账号 $ useradd 选项 用户名 选项: -c comment 指定一段注 ...

  10. 洛谷P1600 天天爱跑步

    天天放毒... 首先介绍一个树上差分. 每次进入的时候记录贡献,跟出来的时候的差值就是子树贡献. 然后就可以做了. 发现考虑每个人的贡献有困难. 于是考虑每个观察员的答案. 把路径拆成两条,以lca分 ...