一)、RoIPooling

这个可以在Faster RCNN中使用以便使生成的候选框region proposal映射产生固定大小的feature map

先贴出一张图,接着通过这图解释RoiPooling的工作原理

针对上图

1)Conv layers使用的是VGG16,feat_stride=32(即表示,经过网络层后图片缩小为原图的1/32),原图800*800,最后一层特征图feature map大小:25*25

2)假定原图中有一region proposal,大小为665*665,这样,映射到特征图中的大小:665/32=20.78,即20.78*20.78,如果你看过Caffe的Roi Pooling的C++源码,在计算的时候会进行取整操作,于是,进行所谓的第一次量化,即映射的特征图大小为20*20

3)假定pooled_w=7,pooled_h=7,即pooling后固定成7*7大小的特征图,所以,将上面在 feature map上映射的20*20的 region  proposal划分成49个同等大小的小区域,每个小区域的大小20/7=2.86,即2.86*2.86,此时,进行第二次量化,故小区域大小变成2*2

4)每个2*2的小区域里,取出其中最大的像素值,作为这一个区域的‘代表’,这样,49个小区域就输出49个像素值,组成7*7大小的feature map

总结,所以,通过上面可以看出,经过两次量化,即将浮点数取整,原本在特征图上映射的20*20大小的region proposal,偏差成大小为14*14的,这样的像素偏差势必会对后层的回归定位产生影响

所以,产生了替代方案,RoiAlign

 二)、RoIAlign

这个是在Mask RCNN中使用以便使生成的候选框region proposal映射产生固定大小的feature map时提出的

先贴出一张图,接着通过这图解释RoiAlign的工作原理

同样,针对上图,有着类似的映射

1)Conv layers使用的是VGG16,feat_stride=32(即表示,经过网络层后图片缩小为原图的1/32),原图800*800,最后一层特征图feature map大小:25*25

2)假定原图中有一region proposal,大小为665*665,这样,映射到特征图中的大小:665/32=20.78,即20.78*20.78,此时,没有像RoiPooling那样就行取整操作,保留浮点数

3)假定pooled_w=7,pooled_h=7,即pooling后固定成7*7大小的特征图,所以,将在 feature map上映射的20.78*20.78的region proposal 划分成49个同等大小的小区域,每个小区域的大小20.78/7=2.97,即2.97*2.97

4)假定采样点数为4,即表示,对于每个2.97*2.97的小区域,平分四份,每一份取其中心点位置,而中心点位置的像素,采用双线性插值法进行计算,这样,就会得到四个点的像素值,如下图

上图中,四个红色叉叉‘×’的像素值是通过双线性插值算法计算得到的

最后,取四个像素值中最大值作为这个小区域(即:2.97*2.97大小的区域)的像素值,如此类推,同样是49个小区域得到49个像素值,组成7*7大小的feature map

总结:知道了RoiPooling和RoiAlign实现原理,在以后的项目中可以根据实际情况进行方案的选择;对于检测图片中大目标物体时,两种方案的差别不大,而如果是图片中有较多小目标物体需要检测,则优先选择RoiAlign,更精准些....

作为一枚技术小白,写这篇笔记的时候参考了很多博客论文,在这里表示感谢,同时,未经同意,请勿转载....

RoIPooling、RoIAlign笔记的更多相关文章

  1. zz致力于变革未来的智能技术

    有 R-CNN SPPNet Fast R-CNN Faster R-CNN ... 的论文翻译 现在已经不能访问了...     [私人整理]空间金字塔池化网络SPPNet详解 SPP-Net是出自 ...

  2. RoIPooling与RoIAlign的区别

    一.RoIPooling与RoIAlign 1.1.RoIPooling 通过对Faster RCNN的学习我妈了解的RolPooling可以使生成的候选框region proposal映射产生固定大 ...

  3. ROIAlign, ROIPooling及ROIWarp对比

    RoI Pooling 实现从原图ROI区域映射到卷积区域最后pooling到固定大小的功能,然后通过池化把该区域的尺寸归一化成卷积网络输入的尺寸. ROIAlign 上面RoI Pooling从原图 ...

  4. 论文笔记:Mask R-CNN

    之前在一次组会上,师弟诉苦说他用 UNet 处理一个病灶分割的任务,但效果极差,我看了他的数据后发现,那些病灶区域比起整张图而言非常的小,而 UNet 采用的损失函数通常是逐像素的分类损失,如此一来, ...

  5. Faster RCNN 学习笔记

    下面的介绍都是基于VGG16 的Faster RCNN网络,各网络的差异在于Conv layers层提取特征时有细微差异,至于后续的RPN层.Pooling层及全连接的分类和目标定位基本相同. 一). ...

  6. Mask RCNN 学习笔记

    下面会介绍基于ResNet50的Mask RCNN网络,其中会涉及到RPN.FPN.ROIAlign以及分类.回归使用的损失函数等 介绍时所采用的MaskRCNN源码(python版本)来源于GitH ...

  7. mask rcnn和roi-align

    faster-rcnn的github源码中是round四舍五入 但kaiming he的ppt是直接取整 1.讲roi-align和roi-pooling区别并且详细阐述roi-align过程的博客: ...

  8. 标题 发布状态 评论数 阅读数 操作 操作 CNN目标检测系列算法发展脉络简析——学习笔记(三):Fast R-CNN

    最近两周忙着上网课.投简历,博客没什么时间写,姑且把之前做的笔记放上来把... 下面是我之前看论文时记的笔记,之间copy上来了,内容是Fast R-CNN的,以后如果抽不出时间写博客,就放笔记上来( ...

  9. git-简单流程(学习笔记)

    这是阅读廖雪峰的官方网站的笔记,用于自己以后回看 1.进入项目文件夹 初始化一个Git仓库,使用git init命令. 添加文件到Git仓库,分两步: 第一步,使用命令git add <file ...

随机推荐

  1. AC自动机-HDU2896-模板题

    http://acm.hdu.edu.cn/showproblem.php?pid=2896 另一道AC自动机的模板题,不过这题需要记录一下具体的匹配情况. /*------------------- ...

  2. day11 匿名函数

    格式 lambda 形参 :逻辑运算方式 lambda x:x+1 普通的方式计算 卧槽.这么长! def calc(x): return x+1 res = calc(10) print(res) ...

  3. LOJ #6270. 数据结构板子题 (离线+树状数组)

    题意 有 \(n\) 个区间,第 \(i\) 个区间是 \([l_i,r_i]\) ,它的长度是 \(r_i-l_i\) . 有 \(q\) 个询问,每个询问给定 \(L,R,K\) ,询问被 \([ ...

  4. A1020. Tree Traversals

    Suppose that all the keys in a binary tree are distinct positive integers. Given the postorder and i ...

  5. (转)使用 Spring缓存抽象 支持 EhCache 和 Redis 混合部署

    背景:最近项目组在开发本地缓存,其中用到了redis和ehcache,但是在使用注解过程中发现两者会出现冲突,这里给出解决两者冲突的具体方案. spring-ehcache.xml配置: <?x ...

  6. typescript基础类型(学习笔记非干货)

    布尔值 Boolean let isDone:boolean=false; 数字 Number let decLiteral:number=6; let hexLiteral:number=0xf00 ...

  7. NO.10: 在operator=中处理 "自我赋值"

    1.确保当对象自我赋值时operator=有良好的行为,其中的技术包括 "来源对象" 和 "目标对象" 的地址,精心周到的语句顺序,以及“ copy and s ...

  8. Django 2.0.3 使用笔记

    运行环境: Python 3.5.2 Django 2.0.3 Django Admin中model显示为中文 定义model时,定义一个Meta对象,设置需要显示的中文名称.verbose_name ...

  9. ElasticSearch搜索介绍四

    ElasticSearch搜索 最基础的搜索: curl -XGET http://localhost:9200/_search 返回的结果为: { "took": 2, &quo ...

  10. Post和get请求时中文乱码

    在web.xml中加入: <filter> <filter-name>CharacterEncodingFilter</filter-name> <filte ...