1.一开始是FaceNet

2.一个重要的改进:image-based, Ding etal.

3.对于样本挑选的改进:

1)hard samples: hard positive 和hard negative (In Defense of Triplet Loss for person Re-Identification)

2)  hard negative (cvpr2016,车辆检索)

3)  minize the distance between those samples with the same id (cvpr 2016, person re-identification by multi-channel parts-based cnn with improved triplet loss function)

4) multiple negative (nips 2016)

5) 四元组,cvpr 2017: Beyond triplet loss: a deep quadruplet network for person re-identification

6) 五元组,cvpr 2016

7) soft-margin (In Defense of Triplet Loss for person Re-Identification)

8) Litfed Embedding Loss and the improved version. (In Defense of Triplet Loss for person Re-Identification, Deep Metric Learning via Lifted Structured Feature Embedding)

9) 认为anchor和positive地位同等,原来的标准triplet把negive推向远离anchor,没有保证也远离positive。因此,考虑向量的运算。Deep Metric Learning with Improved Triplet Loss for Face Clustering in video.

triplet改进,变种的更多相关文章

  1. 随机采样方法整理与讲解(MCMC、Gibbs Sampling等)

    本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到P ...

  2. LDA-math-MCMC 和 Gibbs Sampling

    http://cos.name/2013/01/lda-math-mcmc-and-gibbs-sampling/ 3.1 随机模拟 随机模拟(或者统计模拟)方法有一个很酷的别名是蒙特卡罗方法(Mon ...

  3. SimRank协同过滤推荐算法

    在协同过滤推荐算法总结中,我们讲到了用图模型做协同过滤的方法,包括SimRank系列算法和马尔科夫链系列算法.现在我们就对SimRank算法在推荐系统的应用做一个总结. 1. SimRank推荐算法的 ...

  4. 随机采样和随机模拟:吉布斯采样Gibbs Sampling

    http://blog.csdn.net/pipisorry/article/details/51373090 吉布斯采样算法详解 为什么要用吉布斯采样 通俗解释一下什么是sampling. samp ...

  5. MCMC算法解析

    MCMC算法的核心思想是我们已知一个概率密度函数,需要从这个概率分布中采样,来分析这个分布的一些统计特性,然而这个这个函数非常之复杂,怎么去采样?这时,就可以借助MCMC的思想. 它与变分自编码不同在 ...

  6. Maths | Metropolis-Hastings algorithm

    目录 1. 随机模拟的基本思想 2. 拒绝抽样 3. Metropolis-Hastings抽样 3.1. 引入思想 3.2. 理论基础:细致平稳条件 3.3. MH算法实现 3.4. 算法升级 3. ...

  7. [Bayes] dchisq: Metropolis-Hastings Algorithm

    dchisq gives the density,                          # 计算出分布下某值处的密度值 pchisq gives the distribution fun ...

  8. 随机模拟(MCMC)

    http://cos.name/2013/01/lda-math-mcmc-and-gibbs-sampling/ http://blog.csdn.net/lin360580306/article/ ...

  9. 机器学习方法(八):随机采样方法整理(MCMC、Gibbs Sampling等)

    转载请注明出处:Bin的专栏,http://blog.csdn.net/xbinworld 本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比 ...

随机推荐

  1. Git的安装和创建版本库

    1.Git是分布式版本控制系统 2.安装Git 下载Git后,按照默认设置即可实现安装,安装完毕后点击git目录下的Git Bash 输入以下命令符: git config --global user ...

  2. oracle 常用字符串函数

    select  initcap('guodongdong') from dual;                                  /返回字符串并将字符串的第一个字母变为大写;  s ...

  3. Oracle12c版本中未归档隐藏参数

    In this post, I will give a list of all undocumented parameters in Oracle 12.1.0.1c. Here is a query ...

  4. QPainter、QPainterPath、QBrush

    参考资料: https://blog.csdn.net/qq_35488967/article/details/70802973https://blog.csdn.net/wanghualin033/ ...

  5. Vue--项目开发之实现tabbar功能来学习单文件组件2

    上一篇文章里item.vue里的span标签内容是写死了,但是我们不希望写死 所以对于五个tab选项的标题需要从外部传入,也就说 需要在item.vue里的script里写上 export defau ...

  6. CAD绘制室外平台步骤5.3

    1.在平面上用直线划出台阶范围. “工具”“曲线工具”“线变复线”选择这几条线,它们就变成了一条线. “三维建模”“造型对象”“平板”选择这条封闭的线,回车,选择相邻门窗柱子等,回车输入平台厚度如“- ...

  7. 【Insert】使用java对mysql数据库进行插入操作

    //插入100条数据package database; import java.sql.Connection; import java.sql.DriverManager; import java.s ...

  8. 【转】Java中static关键字用法总结

    1.     静态方法 通常,在一个类中定义一个方法为static,那就是说,无需本类的对象即可调用此方法 声明为static的方法有以下几条限制: · 它们仅能调用其他的static 方法. · 它 ...

  9. java套接字(socket)实例

    客户端socket 流程: 1.连接远程主机 2.发送数据 3.接收数据 4.关闭流与socket连接 实例: import java.io.*; import java.net.Socket; im ...

  10. Top k问题的讨论(三种方法的java实现及适用范围)

    在很多的笔试和面试中,喜欢考察Top K.下面从自身的经验给出三种实现方式及实用范围. 合并法 这种方法适用于几个数组有序的情况,来求Top k.时间复杂度为O(k*m).(m:为数组的个数).具体实 ...