Underdetermined system Constraint counting Overdetermined system
https://en.wikipedia.org/wiki/Underdetermined_system
https://en.wikipedia.org/wiki/Constraint_counting
In mathematics, constraint counting is counting the number of constraints in order to compare it with the number of variables, parameters, etc. that are free to be determined, the idea being that in most cases the number of independent choices that can be made is the excess of the latter over the former.
For example, in linear algebra if the number of constraints (independent equations) in a system of linear equations equals the number of unknowns then precisely one solution exists; if there are fewer independent equations than unknowns, an infinite number of solutions exist; and if the number of independent equations exceeds the number of unknowns, then no solutions exist.
In the context of partial differential equations, constraint counting is a crude but often useful way of counting the number of free functions needed to specify a solution to a partial differential equation.
https://en.wikipedia.org/wiki/Overdetermined_system
Consider the system of 3 equations and 2 unknowns (X and Y), which is overdetermined because 3>2, and which corresponds to Diagram #1:
There is one solution for each pair of linear equations: for the first and second equations (0.2, −1.4), for the first and third (−2/3, 1/3), and for the second and third (1.5, 2.5). However, there is no solution that satisfies all three simultaneously. Diagrams #2 and 3 show other configurations that are inconsistent because no point is on all of the lines. Systems of this variety are deemed inconsistent.
超定方程 线性依赖
The only cases where the overdetermined system does in fact have a solution are demonstrated in Diagrams #4, 5, and 6. These exceptions can occur only when the overdetermined system contains enough linearly dependent equations that the number of independent equations does not exceed the number of unknowns. Linear dependence means that some equations can be obtained from linearly combining other equations. For example, Y = X + 1 and 2Y = 2X + 2 are linearly dependent equations because the second one can be obtained by taking twice the first one.
Underdetermined system Constraint counting Overdetermined system的更多相关文章
- 对于System.exit(0)和System.exit(1)的一般理解
public static void exit(int status) 终止当前正在运行的 Java 虚拟机.参数用作状态码:根据惯例,非 0 的状态码表示异常终止. 该方法调用 Runtime 类中 ...
- 重写成员“log4net.Util.ReadOnlyPropertiesDictionary.GetObjectData(System.Runtime.Serialization.SerializationInfo, System.Runtime.Serialization.StreamingContext)”时违反了继承安全性规则
在.NET 4.0下使用最新版本的log4Net 1.2.10,会遇到下面这样的错误: 重写成员“log4net.Util.ReadOnlyPropertiesDictionary.GetObject ...
- System.out.println与System.err.println的区别(输出顺序!!!)
System.out.println与System.err.println的区别(输出顺序!!!) 分类:java (208) (0) System.out.println与System.err.p ...
- 错误描述:请求“System.Data.SqlClient.SqlClientPermission, System.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”类型的权限已失败
错误描述:请求“System.Data.SqlClient.SqlClientPermission, System.Data, Version=2.0.0.0, Culture=neutral, Pu ...
- System.Diagnostics.Debug和System.Diagnostics.Trace 【转】
在 .net 类库中有一个 system.diagnostics 命名空间,该命名空间提供了一些与系统进程.事件日志.和性能计数器进行交互的类库.当中包括了两个对开发人员而言十分有用的类——debug ...
- System.Data.Dbtype转换为System.Data.SqlDbType
最近在做一些OM Mapping的准备工作,新学了一招. 如果要将System.Data.Dbtype转换为System.Data.SqlDbType,以前以为要写Switch Case语句.其实有很 ...
- (C# Debug)A first chance exception of type 'System.ArgumentException' occurred in System.Data.dll
Debug 模式下运行程序的时候,Output 窗口出来个错误“A first chance exception of type 'System.ArgumentException' occurred ...
- hdu 1005 java(System.out.println();与System.out.println(“\n”);)
//package Main; import java.util.Scanner; public class Main { static int [][] mat=new int [2][2]; st ...
- 关于System.out.println()与System.out.print("\n")的区别
这是在写junit测试的时候发现的. import java.io.ByteArrayOutputStream; import java.io.PrintStream; public class Te ...
随机推荐
- spring3-mvc-maven-hello-world-master mvn jetty:run 及 mvn war:war 指令
spring3-mvc-maven-annotation-hello-world-master mvn jetty:run Run this project locally Terminal $ m ...
- 图文剖析自己定义View的绘制(以自己定义滑动button为例)
自己定义View一直是横在Android开发人员面前的一道坎. 一.View和ViewGroup的关系 从View和ViewGroup的关系来看.ViewGroup继承View. View的子类.多是 ...
- HTTP Status 500 - Unable to create directory
分析原因: 例如:java web项目 上传图片创建文件夹cd /data/apps/static-web/sjk/driver/attachment/编号/文件名称.jpg 在创建文件目录 /dat ...
- 音视频编解码: YUV采样格式中的YUV444,YUV422,YUV420理解
YUV各种采样格式的说明 通常我们用RGB表示一种彩色.计算机系统里的LCD显示的数据就是RGB来表示每个像素的颜色.而在我们生活里,有黑白电视机与彩色电视机两种,拍摄节目源时不可以用两种不同的摄像机 ...
- 【Python】Python的安装与个人使用记录
下载 从官网上下载,目前,最新版是Python3,基于项目需求,我们使用的是Python2. 我是在CentOS上安装,下载的是Python-2.7.9.tgz. 安装 tar -zxvf Pytho ...
- Node入门教程(6)第五章:node 模块化(上)模块化演进
node 模块化 JS 诞生的时候,仅仅是为了实现网页表单的本地校验和简单的 dom 操作处理.所以并没有模块化的规范设计. 项目小的时候,我们可以通过命名空间.局部作用域.自执行函数等手段实现变量不 ...
- MXNET:欠拟合、过拟合和模型选择
当模型在训练数据集上更准确时,在测试数据集上的准确率既可能上升又可能下降.这是为什么呢? 训练误差和泛化误差 在解释上面提到的现象之前,我们需要区分训练误差(training error)和泛化误差( ...
- 编译错误“The run destination My Mac is not valid for Running the scheme '***',解决办法
[转载] http://blog.csdn.net/duanyipeng/article/details/8007684 编译错误"The run destination My Ma ...
- nginx日志分割小脚本
nginx的日志一直是写在一个文件上面,运行久了之后文件会非常大,因此我们有必要对nginx的日志进行分割: 1 2 3 4 5 6 7 8 9 10 11 #! /bin/bash ACCESS ...
- ubuntu之视频转换(Avconv的使用)
1.安装 sudo apt-get install ffmpeg libav-tools 2.基本操作 avconv [options] [[infile options] -i infile] [[ ...