[CodeForces - 447D] D - DZY Loves Modification
D - DZY Loves Modification
As we know, DZY loves playing games. One day DZY decided to play with a n × mmatrix. To be more precise, he decided to modify the matrix with exactly koperations.
Each modification is one of the following:
- Pick some row of the matrix and decrease each element of the row by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the row before the decreasing.
- Pick some column of the matrix and decrease each element of the column by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the column before the decreasing.
DZY wants to know: what is the largest total value of pleasure he could get after performing exactly k modifications? Please, help him to calculate this value.
Input
The first line contains four space-separated integers n, m, k and p (1 ≤ n, m ≤ 103; 1 ≤ k ≤ 106; 1 ≤ p ≤ 100).
Then n lines follow. Each of them contains m integers representing aij (1 ≤ aij ≤ 103) — the elements of the current row of the matrix.
Output
Output a single integer — the maximum possible total pleasure value DZY could get.
Example
2 2 2 21 32 4
11
2 2 5 21 32 4
11
Note
For the first sample test, we can modify: column 2, row 2. After that the matrix becomes:
1 10 0
For the second sample test, we can modify: column 2, row 2, row 1, column 1, column 2. After that the matrix becomes:
-3 -3-2 -2
题目的意思是,给你一个n*m的矩阵,每个位置有一个数.你可以进行k次操作,每次操作可以选择一行(列),然后把ans累加上这一行(列)的数的和,然后把这一行(列)的每一个数都减去一个固定的值.
要求最大化ans.
我们设R[i]为选择i个(次)行的最优解,C[i]为选择i个(次)列的最优解,由于选择的总次数为K,所以
ans=max(ans,R[i]+C[K-i]).然而这是不对的,因为在考虑R和C的时候是相对独立的,不受另一个因素的影响,而实际上,选择i个行,j个列,会产生i*(K-i)个交点,由于交点的存在,所以还要减去i*(K-i)*p(那个固定值).
所以ans=max(ans,R[i]+C[K-1]-i*(K-i)*p)(要注意数据类型)
那么我们现在来关注如何构造出R和C.由于贪心的想法,我们肯定挑目前和最大的行(列),那么我们可以用两个优先队列来维护一下不就好了.
#include<cstdio> #include<cstring> #include<algorithm> #include<vector> #include<queue> using namespace std; ,maxK=; int sum_R[maxn],sum_C[maxn]; long long R[maxK],C[maxK]; int n,m,K,p,a[maxn][maxn]; long long ans; struct node{ int x,index; bool operator < (const node u) const {return x<u.x;} }; priority_queue <node> Q_R,Q_C; int read(){ ,f=; char ch=getchar(); '){if (ch=='-') f=-f; ch=getchar();} +ch-',ch=getchar(); return x*f; } int main(){ n=read(),m=read(),K=read(),p=read(),ans=; ; i<=n; i++) ; j<=m; j++) a[i][j]=read(); ; i<=n; i++){ sum_R[i]=; ; j<=m; j++) sum_R[i]+=a[i][j]; } ; i<=m; i++){ sum_C[i]=; ; j<=n; j++) sum_C[i]+=a[j][i]; } R[]=C[]=; ; i<=n; i++){node P; P.x=sum_R[i],P.index=i; Q_R.push(P);} ; i<=K; i++){ node P=Q_R.top(); Q_R.pop(); R[i]=R[i-]+P.x,P.x-=m*p,Q_R.push(P); } ; i<=m; i++){node P; P.x=sum_C[i],P.index=i; Q_C.push(P);} ; i<=K; i++){ node P=Q_C.top(); Q_C.pop(); C[i]=C[i-]+P.x,P.x-=n*p,Q_C.push(P); } ans=-; ; i<=K; i++) ans=max(ans,R[i]+C[K-i]-(long long)i*(K-i)*p); printf("%lld",ans); ; }
[CodeForces - 447D] D - DZY Loves Modification的更多相关文章
- Codeforces 447D - DZY Loves Modification
447D - DZY Loves Modification 思路:将行和列分开考虑.用优先队列,计算出行操作i次的幸福值r[i],再计算出列操作i次的幸福值c[i].然后将行取i次操作和列取k-i次操 ...
- Codeforces Round #FF (Div. 1) B. DZY Loves Modification 优先队列
B. DZY Loves Modification 题目连接: http://www.codeforces.com/contest/446/problem/B Description As we kn ...
- Codeforces Round #FF (Div. 2) D. DZY Loves Modification 优先队列
D. DZY Loves Modification time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- Codeforces Round #FF (Div. 1) B. DZY Loves Modification
枚举行取了多少次,如行取了i次,列就取了k-i次,假设行列单独贪心考虑然后相加,那么有i*(k-i)个交点是多出来的:dpr[i]+dpc[k-i]-i*(k-i)*p 枚举i取最大值.... B. ...
- D. DZY Loves Modification
D. DZY Loves Modification time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- B. DZY Loves Modification
B. DZY Loves Modification time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- CF446B DZY Loves Modification 优先队列
As we know, DZY loves playing games. One day DZY decided to play with a n × m matrix. To be more pre ...
- Codeforces 444 C - DZY Loves Colors
C - DZY Loves Colors 思路: 分块,复杂度有点玄学,和普通分块不同的是在这个块被一次染色的时候暴力染整个块. 代码: #pragma GCC optimize(2) #pragma ...
- [CodeForces - 447E] E - DZY Loves Fibonacci Numbers
E DZY Loves Fibonacci Numbers In mathematical terms, the sequence Fn of Fibonacci numbers is define ...
随机推荐
- js转义和反转义html
本文地址: http://www.cnblogs.com/daysme/p/7100553.html 下面的代码网上常用有,但不是想要的. JS实现HTML标签转义及反转义 http://blog.c ...
- 4、Python中的类详解(0601)
<大话数据结构>的作者程杰在博客园也有博客,网址是:http://cj723.cnblogs.com/ 面向对象编程(OOP) 1.程序 = 指令 + 数据 代码可以选择以指令为核心或以数 ...
- 增强 用文本增强修改SAP标准屏幕中的字段名称 属于元素的文本增强
如果想要改变标准屏幕中的字段名称,如把物料主数据基本数据元素的名字改为我们想要的名字 . 1.首先,事务MM03进入物料主数据的基本数据2视图中,将鼠标光标放在需要更改的字段“页格式”上,然后按F1键 ...
- Java LocalDateTime,DateTimeFomatter----JDK8新时间类的简单使用
JDK8中增加了一系列时间的类, (据说)是为了干掉过去的Date,Calendar类的, 过去的Date类(据说)有着线程不安全等诸多弊端, 至于我的个人感受就是用起来实在是很麻烦,我一般封装成几个 ...
- jdbcTemplate 后台接口中的分页
Springboot+jdbcTemplate 对查询结果列表做分页, 之前开发的小项目,数据逐渐增多,每次返回所有的查询结果,耗费性能和时间 想到做分页. 于是从简单的分页做起. jdbcTemp ...
- C语言之网络编程(服务器和客户端)
Linux网络编程 1. 套接字:源IP地址和目的IP地址以及源端口号和目的端口号的组合称为套接字.其用于标识客户端请求的服务器和服务. 常用的TCP/IP协议的3种套接字类型如下所示. (1)流套接 ...
- Java离线人脸识别SDK 支持arcface 2.0 最新版
虹软人脸识别SDK之Java版,支持SDK 1.1+,以及当前最新版本2.0,滴滴,抓紧上车! JDK SDK Win release license status 前言 由于业务需求,最近跟人脸识别 ...
- x1c 2018 体验
总结一下: 2018对比2017优点: 1屏幕完爆:HDR WHD镜面屏完爆 FHD 雾面屏(污+雾,所谓的油腻感),还有色彩!正红色第一次觉得这么好看.别人看得出来看不出来我不知道,至少我能看出来非 ...
- AD原理图统一命名
1 Tools->Annotate Schematics 调出统一命名窗口 2 勾选要统一命名的原理图 3 Update Changes List 4 Accept Changes(creat ...
- ado.net常用操作
目录 一.ADO.NET概要 二.ADO.NET的组成 三.Connection连接对象 3.1.连接字符串 3.1.1.SQL Server连接字符串 3.1.2.Access连接字符串 3.1.3 ...