KM算法详解[转]
KM算法详解
0.二分图
二分图的概念
二分图的判定
二分图博客推荐
1.KM算法初步
增广路径

- 如果是深搜,x2找到y0匹配,但发现y0已经被x1匹配了,于是就深入到x1,去为x1找新的匹配节点,结果发现x1没有其他的匹配节点,于是匹配失败,x2接着找y1,发现y1可以匹配,于是就找到了新的增广路径。
- 如果是宽搜,x1找到y0节点的时候,由于不能马上得到一个合法的匹配,于是将它做为候选项放入队列中,并接着找y1,由于y1已经匹配,于是匹配成功返回了。
匈牙利算法
匈牙利算法步骤
匈牙利算法博客推荐
KM算法
KM算法步骤
KM算法标杆(又名顶标)的引入
- 所以我们可以把这匈牙利算法和FF算法结合起来。这就是KM算法的思路了:尽量找最大的边进行连边,如果不能则换一条较大的。
- FF算法里面,我们每次是找最长(短)路进行通流,所以二分图匹配里面我们也按照FF算法找最大边进行连边!
- 但是遇到某个点被匹配了两次怎么办?那就用匈牙利算法进行更改匹配!
- 所以,根据KM算法的思路,我们一开始要对边权值最大的进行连线。
- 那问题就来了,我们如何让计算机知道该点对应的权值最大的边是哪一条?或许我们可以通过某种方式记录边的另一端点,但是呢,后面还要涉及改边,又要记录边权值总和,而这个记录端点方法似乎有点麻烦。
- 于是KM采用了一种十分巧妙的办法(也是KM算法思想的精髓):添加标杆(顶标)
- 我们对左边每个点Xi和右边每个点Yi添加标杆Cx和Cy。其中我们要满足Cx+Cy>=w[x][y](w[x][y]即为点Xi、Yi之间的边权值)
- 对于一开始的初始化,我们对于每个点分别进行如下操作:Cx=max(w[x][y]); Cy=0;


KM流程详解
- 初始化可行顶标的值 (设定lx,ly的初始值)
- 用匈牙利算法寻找相等子图的完备匹配
- 若未找到增广路则修改可行顶标的值
- 重复(2)(3)直到找到相等子图的完备匹配为止
- 于是乎我们连了AD,形成一个新的二分图(我们下面叫它二分子图好了)
- 接下来就尴尬了,计算机接下来要连B点的BD,但是D点已经和A点连了,怎么办呢???
- 根据匈牙利算法,我们做的是将A点与其他点进行连线,但此时的子图里“不存在”与A点相连的其他边,怎么办呢???
- 为此,我们就需要加上这些边!很明显,我们添边,自然要加上不在子图中边权最大的边,也就是和子图里这个边权值差最小的边。
- 于是,我们再一度引入了一变量d,d=min{Cx[i]+Cy[j]-w[i][j]},其中,在这个题目里Cx[i]指的是A的标杆,Cy[j]是除D点(即已连点)以外的点的标杆。
- 随后,对于原先存在于子图的边AD,我们将A的标杆Cx[i]减去d,D的标杆Cy[d]加上d。
- 这样,这就保证了原先存在AD边保留在了子图中,并且把不在子图的最大权值的与A点相连的边AE添加到了子图。
- 因为计算机判断一条边是否在该子图的条件是其两端的顶点的标杆满足Cx+Cy==w[x][y]
- 对于原先的边,我们对左端点的标杆减去了d,对右端点的标杆加上了d,所以最终的结果还是不变,仍然是w[x][y]。
- 对于我们要添加的边,我们对于左端点减去了d,即Cx[i]=Cx[i]-d;为方便表示我们把更改后的的Cx[i]视为Cz[i],即Cz[i]=Cx[i]-d;
- 因为Cz[i]=Cx[i]-d;d=Cx[i]+Cy[j]-w[i][j];
- 把d代入左式可得Cz[i]=Cx[i]-(Cx[i]+Cy[j]-w[i][j]);
- 化简得Cz[i]+Cy[j]=w[i][j];
- 满足了要求!即添加了新的边。
- 重复进行上述流程。(匈牙利算法以及FF算法的结合)
KM算法博客推荐
KM算法详解[转]的更多相关文章
- 【原创】我的KM算法详解
0.二分图 二分图的概念 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V, E)是一个无向图.如果顶点集V可分割为两个互不相交的子集X和Y,并且图中每条边连接的两个顶点一个在X中,另一个在Y ...
- KM算法 详解+模板
先说KM算法求二分图的最佳匹配思想,再详讲KM的实现.[KM算法求二分图的最佳匹配思想] 对于具有二部划分( V1, V2 )的加权完全二分图,其中 V1= { x1, x2, x3, ... , x ...
- KM算法详解+模板
http://www.cnblogs.com/wenruo/p/5264235.html KM算法用来求二分图最大权完美匹配. 本文配合该博文服用更佳:趣写算法系列之--匈牙利算法 现在有N男N女,男 ...
- BM算法 Boyer-Moore高质量实现代码详解与算法详解
Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...
- kmp算法详解
转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- [转] KMP算法详解
转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的K ...
- 【转】AC算法详解
原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和 ...
- KMP算法详解(转自中学生OI写的。。ORZ!)
KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...
随机推荐
- XMatch: 您的部门管理助手
本博客为XMatch项目宣传博客. XMatch: 您的部门管理助手 目录 一.产品概述 二.产品功能 三.产品的创新特色 四.推广方案 五.宣传图 一.产品概述 当前社团的各方面管理工作主要都由手工 ...
- 4、keepalived高可用nginx负载均衡
keepalived: HTTP_GET //使用keepalived获取后端real server健康状态检测 SSL_GET(https) //这里以为这后端使用的是http协议 ...
- C#接口的作用详解
.C#接口的作用 : C#接口是一个让很多初学C#者容易迷糊的东西,用起来好像很简单,定义接口,里面包含方法,但没有方法具体实现的代码,然后在继承该接口的类里面要实现接口的所有方法的代码,但没有真正认 ...
- Linux命令之sudo
在 Linux 系统中,由于 root 的权限过大,一般情况下都不使用它.只有在一些特殊情况下才采用登录root 执行管理任务,一般情况下临时使用 root 权限多采用 su 和 sudo 命令. ...
- 用tsMuxeR GUI给ts视频添加音轨
收藏比赛的都应该知道,高清的直播流录制了后一般是ts或者mkv封装,前者用tsMuxeR GUI可以对视频音频轨进行操作,后者用mkvtoolnix,两者都是无损操作. 至于其他格式就不考虑了,随便用 ...
- gym 101164 H.Pub crawl 凸包
题目链接:http://codeforces.com/gym/101164/attachments 题意:对于已知的 n 个二维坐标点,要求按照某种特定的连线方式将尽可能多的点连接(任意相邻的 3 个 ...
- 在js文件里调用另一个js文件里的函数
这个是我今天解决的一个小问题,我在创建界面的时候,根据不同的界面需求对应创建了不同的js文件来搭建界面,搭建完毕之后再将各个生成页面的函数汇总到主界面上,通过visibility属性切换显示,这时候出 ...
- JaveWeb 公司项目(3)----- 通过Thrift端口获取数据库数据
前面两篇博客的内容主要是界面搭建的过程,随着界面搭建工作的完成,网页端需要加入数据,原先的B/S架构中C#通过Thrift接口获取数据,所以在网页端也沿用这个设计 首先,新建一个Maven下的Web项 ...
- Eclispe中编辑xml配置文件时不会提示也不能自动调整格式
创建了一个xml文件后,发现编辑起来和原来的那些有所不同,不会提示补全.也不能自动调整格式???woc? 哈哈哈哈哈,“我最恨你像个石头一样” 后来发现是编辑器被改了!!! 右键xml文件然后open ...
- 网格视图GridView的使用
网格视图GridView的排列方式与矩阵类似,当屏幕上有很多元素(文字.图片或其他元素)需要按矩阵格式进行显示时,就可以使用GridView控件来实现. 本文将以一个具体的实例来说明如何使用GridV ...