转自:http://www.jianshu.com/p/fab82fa53e16

1.tf中的nce_loss的API

def nce_loss(weights, biases, inputs, labels, num_sampled, num_classes,
num_true=1,
sampled_values=None,
remove_accidental_hits=False,
partition_strategy="mod",
name="nce_loss")

假设nce_loss之前的输入数据是K维的,一共有N个类,那么

  • weight.shape = (N, K)
  • bias.shape = (N)
  • inputs.shape = (batch_size, K)
  • labels.shape = (batch_size, num_true)
  • num_true : 实际的正样本个数
  • num_sampled: 采样出多少个负样本
  • num_classes = N
  • sampled_values: 采样出的负样本,如果是None,就会用不同的sampler去采样。待会儿说sampler是什么。
  • remove_accidental_hits: 如果采样时不小心采样到的负样本刚好是正样本,要不要干掉
  • partition_strategy:对weights进行embedding_lookup时并行查表时的策略。TF的embeding_lookup是在CPU里实现的,这里需要考虑多线程查表时的锁的问题。

nce_loss的实现逻辑如下:

  • _compute_sampled_logits: 通过这个函数计算出正样本和采样出的负样本对应的output和label
  • sigmoid_cross_entropy_with_logits: 通过 sigmoid cross entropy来计算output和label的loss,从而进行反向传播。这个函数把最后的问题转化为了num_sampled+num_real个两类分类问题,然后每个分类问题用了交叉熵的损伤函数,也就是logistic regression常用的损失函数。TF里还提供了一个softmax_cross_entropy_with_logits的函数,和这个有所区别。

2.tf中word2vec实现

loss = tf.reduce_mean(
tf.nn.nce_loss(nce_weights, nce_biases, embed, train_labels,
num_sampled, vocabulary_size))

它这里并没有传sampled_values,那么它的负样本是怎么得到的呢?继续看nce_loss的实现,可以看到里面处理sampled_values=None的代码如下:

if sampled_values is None:
sampled_values = candidate_sampling_ops.log_uniform_candidate_sampler(
true_classes=labels,
num_true=num_true,
num_sampled=num_sampled,
unique=True,
range_max=num_classes)

所以,默认情况下,他会用log_uniform_candidate_sampler去采样。那么log_uniform_candidate_sampler是怎么采样的呢?他的实现在这里

  • 他会在[0, range_max)中采样出一个整数k
  • P(k) = (log(k + 2) - log(k + 1)) / log(range_max + 1)

可以看到,k越大,被采样到的概率越小。那么在TF的word2vec里,类别的编号有什么含义吗?看下面的代码:

def build_dataset(words):
count = [['UNK', -1]]
count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)
data = list()
unk_count = 0
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0 # dictionary['UNK']
unk_count += 1
data.append(index)
count[0][1] = unk_count
reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reverse_dictionary

可以看到,TF的word2vec实现里,词频越大,词的类别编号也就越小。因此,在TF的word2vec里,负采样的过程其实就是优先采词频高的词作为负样本。

在提出负采样的原始论文中, 包括word2vec的原始C++实现中。是按照热门度的0.75次方采样的,这个和TF的实现有所区别。但大概的意思差不多,就是越热门,越有可能成为负样本。

Tf中的NCE-loss实现学习【转载】的更多相关文章

  1. tf中的run()与eval()【转载】

    转自:https://blog.csdn.net/jiaoyangwm/article/details/79248535  1.eval() 其实就是tf.Tensor的Session.run() 的 ...

  2. tf中计算图 执行流程学习【转载】

    转自:https://blog.csdn.net/dcrmg/article/details/79028003 https://blog.csdn.net/qian99/article/details ...

  3. Java多线程学习(转载)

    Java多线程学习(转载) 时间:2015-03-14 13:53:14      阅读:137413      评论:4      收藏:3      [点我收藏+] 转载 :http://blog ...

  4. 项目中使用Quartz集群分享--转载

    项目中使用Quartz集群分享--转载 在公司分享了Quartz,发布出来,希望大家讨论补充. CRM使用Quartz集群分享  一:CRM对定时任务的依赖与问题  二:什么是quartz,如何使用, ...

  5. 浅谈Java中的深拷贝和浅拷贝(转载)

    浅谈Java中的深拷贝和浅拷贝(转载) 原文链接: http://blog.csdn.net/tounaobun/article/details/8491392 假如说你想复制一个简单变量.很简单: ...

  6. ArcGIS中的坐标系定义与转换 (转载)

    原文:ArcGIS中的坐标系定义与转换 (转载) 1.基准面概念:  GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定,因此欲正确定义GIS系统坐 ...

  7. 如何设置Win7系统中的上帝模式GodMode(转载)

    如何设置Win7系统中的上帝模式GodMode(转载) NT6系统中隐藏了一个秘密的“GodMode”,字面上译为“上帝模式”.God Mode其实就是一个简单的文件夹窗口,但包含了几乎所有系统的设置 ...

  8. TF中conv2d和kernel_initializer方法

    conv2d中的padding 在使用TF搭建CNN的过程中,卷积的操作如下 convolution = tf.nn.conv2d(X, filters, strides=[1,2,2,1], pad ...

  9. (原)关于MEPG-2中的TS流数据格式学习

    关于MEPG-2中的TS流数据格式学习 Author:lihaiping1603 原创:http://www.cnblogs.com/lihaiping/p/8572997.html 本文主要记录了, ...

随机推荐

  1. Javascript阿拉伯数字转中文

    Javascript阿拉伯数字转中文 template.helper('_toChinese', function (number) { /* * 单位 */ var units = '个十百千万@# ...

  2. 网络通信协议之ICMP

    ICMP(互联网控制消息协议) ICMP >>Internet Control Message Protocol IP协议的缺点: >>无差错报告和差错纠正机制 >> ...

  3. python3.6利用pyinstaller模块打包程序为.exe可执行程序

    步骤: 1.安装pyinstaller模块:(必须在联网情况下进行) 操作原理: python3.6已经自带了pip,所以只需要在cmd中执行 pip install pyinstaller 就可以安 ...

  4. HTML滚动文字代码 marquee标签

    看到一个HTML滚动文字代码 marquee标签的内容,非常全面,而且觉得有点意思,可以让大家为自己博客或者网站设置一个漂亮的滚动文字. 以下是原文: <marquee style=" ...

  5. li下的ul----多级列表

    <ul id="ul_Style1"> <li>第1级第1行</li> <li> <ul id="ul_Style2 ...

  6. bootstrap modal 弹出其他页面

    此文是可以的,是复制的然后粘贴 1.不使用js 方式 1.1 按钮 <a class=" btn default" href="ui_modals_ajax_sam ...

  7. jQuery 选择器 筛选器 样式操作 文本操作 属性操作 文档处理 事件 动画效果 插件 each、data、Ajax

    jQuery jQuery介绍 1.jQuery是一个轻量级的.兼容多浏览器的JavaScript库. 2.jQuery使用户能够更方便地处理HTML Document.Events.实现动画效果.方 ...

  8. [No0000162]如何不靠运气致富|来自硅谷著名天使投资人的40条致富经

    1. Seek wealth, not money or status. Wealth is having assets that earn while you sleep. Money is how ...

  9. [No0000B1]ReSharper操作指南2/16-ReSharper食谱与特定于域的教程

    自动导入名称空间 有关更多信息,请参阅导入缺少命名空间. 每当您使用未添加using语句的命名空间中的类型时,ReSharper会为您提供在您所在文件的顶部添加相应的语句.这由在所使用的类型上方显示的 ...

  10. tensorflow 计算均值和方差

    我们在处理矩阵数据时,需要用到数据的均值和方差,比如在batch normalization的时候. 那么,tensorflow中计算均值和方差的函数是:tf.nn.moments(x, axes) ...