E. Memory and Casinos

题目连接:

http://codeforces.com/contest/712/problem/E

Description

There are n casinos lined in a row. If Memory plays at casino i, he has probability pi to win and move to the casino on the right (i + 1) or exit the row (if i = n), and a probability 1 - pi to lose and move to the casino on the left (i - 1) or also exit the row (if i = 1).

We say that Memory dominates on the interval i... j if he completes a walk such that,

He starts on casino i.
He never looses in casino i.
He finishes his walk by winning in casino j.

Note that Memory can still walk left of the 1-st casino and right of the casino n and that always finishes the process.

Now Memory has some requests, in one of the following forms:

1 i a b: Set .
2 l r: Print the probability that Memory will dominate on the interval l... r, i.e. compute the probability that Memory will first leave the segment l... r after winning at casino r, if she starts in casino l.

It is guaranteed that at any moment of time p is a non-decreasing sequence, i.e. pi ≤ pi + 1 for all i from 1 to n - 1.

Please help Memory by answering all his requests!

Input

The first line of the input contains two integers n and q(1 ≤ n, q ≤ 100 000), — number of casinos and number of requests respectively.

The next n lines each contain integers ai and bi (1 ≤ ai < bi ≤ 109) — is the probability pi of winning in casino i.

The next q lines each contain queries of one of the types specified above (1 ≤ a < b ≤ 109, 1 ≤ i ≤ n, 1 ≤ l ≤ r ≤ n).

It's guaranteed that there will be at least one query of type 2, i.e. the output will be non-empty. Additionally, it is guaranteed that p forms a non-decreasing sequence at all times.

Output

Print a real number for every request of type 2 — the probability that boy will "dominate" on that interval. Your answer will be considered correct if its absolute error does not exceed 10 - 4.

Namely: let's assume that one of your answers is a, and the corresponding answer of the jury is b. The checker program will consider your answer correct if |a - b| ≤ 10 - 4.

Sample Input

3 13

1 3

1 2

2 3

2 1 1

2 1 2

2 1 3

2 2 2

2 2 3

2 3 3

1 2 2 3

2 1 1

2 1 2

2 1 3

2 2 2

2 2 3

2 3 3

Sample Output

0.3333333333

0.2000000000

0.1666666667

0.5000000000

0.4000000000

0.6666666667

0.3333333333

0.2500000000

0.2222222222

0.6666666667

0.5714285714

0.6666666667

Hint

题意

在第i个位置,你有pi的概率走到i+1,有(1-pi)的概率走到i-1

单点修改概率

区间查询从L开始,从R离开的概率是多少

题解:

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+7;
typedef pair<double,double> SgTreeDataType;
struct treenode
{
int L , R ;
SgTreeDataType A;
void updata(SgTreeDataType v)
{
A=v;
}
};
pair<double,double>tmp=make_pair(1.0,0);
treenode tree[maxn*4]; inline void push_up(int o)
{
tree[o].A.first = tree[o*2].A.first*tree[o*2+1].A.first;
tree[o].A.second = tree[o*2].A.second + tree[o*2+1].A.second * tree[o*2].A.first;
} inline void build_tree(int L , int R , int o)
{
tree[o].L = L , tree[o].R = R;
if (R > L)
{
int mid = (L+R) >> 1;
build_tree(L,mid,o*2);
build_tree(mid+1,R,o*2+1);
}
} inline void update(int QL,int QR,SgTreeDataType v,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) tree[o].updata(v);
else
{
int mid = (L+R)>>1;
if (QL <= mid) update(QL,QR,v,o*2);
if (QR > mid) update(QL,QR,v,o*2+1);
push_up(o);
}
} inline SgTreeDataType query(int QL,int QR,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) return tree[o].A;
else
{
int mid = (L+R)>>1;
SgTreeDataType AA=tmp,BB=tmp,CC;
if (QL <= mid) AA = query(QL,QR,2*o);
if (QR > mid) BB = query(QL,QR,2*o+1);
push_up(o);
CC.first=AA.first*BB.first;
CC.second=AA.second+BB.second*AA.first;
return CC;
}
} int main()
{
int n,q;
scanf("%d%d",&n,&q);
build_tree(1,n,1);
for(int i=1;i<=n;i++)
{
double a,b;
cin>>a>>b;
double p = a/b;
update(i,i,make_pair((1.0-p)/p,(1.0-p)/p),1);
}
for(int i=1;i<=q;i++)
{
int op,a,b,c;
scanf("%d",&op);
if(op==1)
{
scanf("%d%d%d",&a,&b,&c);
double p = 1.0*b/(1.0*c);
pair<double,double>D=make_pair((1-p)/p,(1-p)/p);
update(a,a,D,1);
}
else
{
scanf("%d%d",&a,&b);
double p = query(a,b,1).second;
if(p<1e20)printf("%.12f\n",1.0/(1.0+p));
else printf("0.000000000000\n");
}
}
return 0;
}

Codeforces Round #370 (Div. 2) E. Memory and Casinos 线段树的更多相关文章

  1. Codeforces Round #370 (Div. 2) E. Memory and Casinos (数学&&概率&&线段树)

    题目链接: http://codeforces.com/contest/712/problem/E 题目大意: 一条直线上有n格,在第i格有pi的可能性向右走一格,1-pi的可能性向左走一格,有2中操 ...

  2. Codeforces Round #254 (Div. 1) C. DZY Loves Colors 线段树

    题目链接: http://codeforces.com/problemset/problem/444/C J. DZY Loves Colors time limit per test:2 secon ...

  3. Codeforces Round #321 (Div. 2) E. Kefa and Watch 线段树hash

    E. Kefa and Watch Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/580/prob ...

  4. Codeforces Round #223 (Div. 2) E. Sereja and Brackets 线段树区间合并

    题目链接:http://codeforces.com/contest/381/problem/E  E. Sereja and Brackets time limit per test 1 secon ...

  5. Codeforces Round #312 (Div. 2) E. A Simple Task 线段树+计数排序

    题目链接: http://codeforces.com/problemset/problem/558/E E. A Simple Task time limit per test5 secondsme ...

  6. Codeforces Round #292 (Div. 1) C. Drazil and Park 线段树

    C. Drazil and Park 题目连接: http://codeforces.com/contest/516/problem/C Description Drazil is a monkey. ...

  7. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树扫描线

    D. Vika and Segments 题目连接: http://www.codeforces.com/contest/610/problem/D Description Vika has an i ...

  8. Codeforces Round #227 (Div. 2) E. George and Cards 线段树+set

    题目链接: 题目 E. George and Cards time limit per test:2 seconds memory limit per test:256 megabytes 问题描述 ...

  9. Codeforces Round #337 (Div. 2) D. Vika and Segments (线段树+扫描线+离散化)

    题目链接:http://codeforces.com/contest/610/problem/D 就是给你宽度为1的n个线段,然你求总共有多少单位的长度. 相当于用线段树求面积并,只不过宽为1,注意y ...

随机推荐

  1. winform下的智能提示框

    winform下的智能提示框 最近在搞winform的程序,接触到有些可能以后还会用到的功能,所以写到博客园里去,第一可以加深自己的印象,第二可以在以后再遇到同样问题的时候忘记了可以马上回来看看,第三 ...

  2. paper 95:《模式识别和机器学习》资源

    Bishop的<模式识别和机器学习>是该领域的经典教材,本文搜罗了有关的教程和读书笔记,供对比学习之用,主要搜索的资源包括CSDN:http://download.csdn.net/sea ...

  3. AJAX-----03远古时期的ajax

    用iframe方法实现 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...

  4. svn提交时强制添加注释

    1,找到Repositories 文件夹 2,在Repositories 中找到对应的工程, 3,在工程下找到hooks文件夹 4.在hooks文件夹下添加 :pre-commit.bat文件;文件内 ...

  5. Android DrawerLayout Plus 增强版抽屉菜单

    DrawerLayout是官方提供的侧滑菜单,相比SliddingMenu,它更加轻量级.默认情况下,DrawerLayout可以设置左侧或者右侧滑出菜单.如下,   xml布局: <!-- & ...

  6. Jquery 处理字符串

    1.去掉空格var txt=$.trim($("txt1").val()); 2.转为数字 txtNum=Number($.trim(txt)) + 1; var thisEle ...

  7. php连接Access数据库错误及解决方法

    <?php $connstr="DRIVER={Microsoft Access Driver (*.mdb)}; DBQ=" . realpath("data.m ...

  8. 连续最短路算法(Successive Shortest Path)(最小费用最大流)

    #include <cstdio> #include <cstring> #include <queue> #include <vector> #inc ...

  9. gfortran编译Fortran数组问题

    可能是IVF(inter visual fortran)比LF(lahey Fortran)编译器比较严格的原因 real :: A(L,M) = (/ 1,2,3,4,5,6,7,8,9,10,11 ...

  10. js页面刷新之实现框架内外刷新(整体、局部)

    这次总结的是框架刷新: 框架内外的按钮均可以定义网页重定向, 框架内部页面的按钮可以实现局部刷新, 框架外部页面的按钮可以实现整页刷新. 代码如下(两个html页面): <!--主界面index ...