难度等级:白银

3145 汉诺塔问题

题目描述 Description

汉诺塔问题(又称为河内塔问题),是一个大家熟知的问题。在A,B,C三根柱子上,有n个不同大小的圆盘(假设半径分别为1-n吧),一开始他们都叠在我A上(如图所示),你的目标是在最少的合法移动步数内将所有盘子从A塔移动到C塔。

游戏中的每一步规则如下:

1. 每一步只允许移动一个盘子(从一根柱子最上方到另一个柱子的最上方)

2. 移动的过程中,你必须保证大的盘子不能在小的盘子上方(小的可以放在大的上面,最大盘子下面不能有任何其他大小的盘子)

如对于n=3的情况,一个合法的移动序列式:

1 from A to C

2 from A to B

1 from C to B

3 from A to C

1 from B to A

2 from B to C

1 from A to C

给出一个数n,求出最少步数的移动序列

输入描述 Input Description

一个整数n

输出描述 Output Description

第一行一个整数k,代表是最少的移动步数。

接下来k行,每行一句话,N from X to Y,表示把N号盘从X柱移动到Y柱。X,Y属于{A,B,C}

样例输入 Sample Input

3

样例输出 Sample Output

7

1 from A to C

2 from A to B

1 from C to B

3 from A to C

1 from B to A

2 from B to C

1 from A to C

数据范围及提示 Data Size & Hint

n<=10

设hn为n个盘子从a柱移到c柱所需要移动的盘次。显然,当n=1时,只需把a柱上的盘子直接移动到c柱就可以了,故h1=1.当n=2时,先将a柱上面的小盘子移动到b柱上去;然后将大盘子从a柱移到c柱;最后,将b柱上的小盘子移到c柱上,共计3个盘次,故h2=3.以此类推,当a柱上有n(n>=2)个盘子时,总是先借助c柱把上面的n-1个盘子移动到b柱,然后把a柱最下面的盘子移动到c柱上;再借助a柱把b柱上的n-1个盘子移动到c柱上;总共移动hn-1+1+hn-1.

∴递推:关系式hn=2*hn-1+1 边界条件:h1=1

也就是hn=2的n次方-1

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int n,s;
char a,b,c;//设3个柱子分别为a,b,c
void dfs(int n,char a,char b,char c)//把a上的n个借助b移到c上
{
if(n==)
{
printf("%d from %c to %c\n",n,a,c);
return;
}
dfs(n-,a,c,b);//把a上的n-1个借助c移到b上
printf("%d from %c to %c\n",n,a,c);//把a上的最后一个移到c上
dfs(n-,b,a,c); //把b上的n-1个借助a移到c上
}
int main()
{
cin>>n;
cout<<pow(,n)-<<endl;
dfs(n,'A','B','C');
}
 

codevs3145 汉诺塔问题的更多相关文章

  1. codevs3145 汉诺塔游戏

    3145 汉诺塔游戏  时间限制: 1 s  空间限制: 32000 KB  题目等级 : 白银 Silver     题目描述 Description 汉诺塔问题(又称为河内塔问题),是一个大家熟知 ...

  2. 算法笔记_013:汉诺塔问题(Java递归法和非递归法)

    目录 1 问题描述 2 解决方案  2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus ...

  3. C#递归解决汉诺塔问题(Hanoi)

    using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace MyExamp ...

  4. 数据结构0103汉诺塔&八皇后

    主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) ...

  5. Conquer and Divide经典例子之汉诺塔问题

    递归是许多经典算法的backbone, 是一种常用的高效的编程策略.简单的几行代码就能把一团遭的问题迎刃而解.这篇博客主要通过解决汉诺塔问题来理解递归的精髓. 汉诺塔问题简介: 在印度,有这么一个古老 ...

  6. 几年前做家教写的C教程(之四专讲了指针与汉诺塔问题)

    C语言学习宝典(4) 指针:可以有效的表示复杂的数据结构,能动态的分配动态空间,方便的使用字符串,有效的使用数组,能直接处理内存单元 不掌握指针就没有掌握C语言的精华 地址:系统为每一个变量分配一个内 ...

  7. python实现汉诺塔

    经典递归算法汉诺塔分析: 当A柱子只有1个盘子,直接A --> C 当A柱子上有3个盘子,A上第一个盘子 --> B, A上最后一个盘子 --> C, B上所有盘子(1个) --&g ...

  8. fzu1036四塔问题(汉诺塔问题拓展)

    #include<iostream> #include<cstdio> #include<cmath> using namespace std; ]; int ru ...

  9. 1019: [SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1495  Solved: 916[Submit][Status] ...

随机推荐

  1. post请求报文

    POST /02_WEB_HTTP/index.html HTTP/1.1 Accept: application/x-ms-application, image/jpeg, application/ ...

  2. android Gui系统之SurfaceFlinger(5)---Vsync(2)

    9.Vsync第二部分 在上一篇中我们讲到,视图的刷新需要很多步骤, void SurfaceFlinger::handleMessageRefresh() { ATRACE_CALL(); preC ...

  3. ORA-07445&ORA-00108错误案例

    由于需要ORACLE的UAT测试环境,克隆了虚拟机后,修改IP地址后,启动实例遇到了ORA-07445 &ORA-00108错误. 案例环境:   SQL> select * from ...

  4. mysql访问连接过多

    今天开发中启动服务器,发现不管怎么样都会报连接池已满,随后删除数据库中的连接,发现可以启动,后来关闭后重新启动又出现连接池已满的错误.后监控数据库发现,当我关闭服务的时候,数据库的连接并没有关闭,随后 ...

  5. 挖一挖C#中那些我们不常用的东西之系列(4)——GetHashCode,ExpandoObject

    这篇继续分享下GetHashCode和ExpandoObject这两个比较好玩的方法. 一:GetHashCode 从MSDN上可以看到的解释是:用作特定类型的哈希函数,也就是说任何对象的实例都会有一 ...

  6. 随便选择两个城市作为预选旅游目标。实现两个独立的线程分别显示10次城市名,每次显示后休眠一段随机时间(1000ms以内),哪个先显示完毕,就决定去哪个城市。分别用Runnable接口和Thread类实现。

    public class Testlvyou extends Thread{ @Override public void run() { test(); } private void test() { ...

  7. JSON字符串和Dictionary字典类型的相互转换

    在开发过程中,往往会遇到数据类型转换的情况,根据自己的业务,可能转换类型有多种,下面就说一下json字符串和字典类型的转换. public static class JsonUntity { /// ...

  8. container error log

    learn from error- Error: org.apache.hadoop.mapreduce.task.reduce.Shuffle$ShuffleError: error in shuf ...

  9. 单机搭建Android开发环境(二)

    前文介绍了如何优化SSD和内存,以发挥开发主机的最佳性能,同时提到在SSD上创建虚拟机.为什么不装双系统呢?双系统性能应该会更好!采用Windows+虚拟机的方式,主要是考虑到安卓开发和日常办公两方面 ...

  10. CF149D. Coloring Brackets[区间DP !]

    题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...