poj2142-The Balance(扩展欧几里德算法)
一,题意:
有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品,
要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小。(注意:砝码位置有左右之分)。
二,思路:
1,砝码有左右位置之分,应对比两种情况
i,a左b右,得出方程 ax1 - by1 = d ;
ii,b左a右,得出方程 bx2 - ay2 = d 。
2,利用扩展欧几里德算法,解出(x1,y1)、(x2,y2),并求出最小x1和x2,以及相对应的y1,y2。
3,输出x1+y1和x2+y2 中的最小值。
三,步骤:
1,由题意得出两个方程
i,ax1 - by1 = d ;
ii,bx2 - ay2 = d 。
2,代入算法,解出两个方程的解(x1,y1)、(x2,y2),并求出最小x1和x2,以及相对应的y1,y2.
(详细步骤请参照本博客poj1061或者poj2115)。
3, 判断步骤
i,x1+y1最小时,输出x1,y1
ii,x2+y2最小时,输出y2,x2。 *此处为y2在前面输出,因为x2+y2最小时,第一个输入的a对应的是y2。
#include<iostream>
#include<cmath>
using namespace std; void exgcd(int a,int b,int& g,int& x,int& y){ //int& a 是定义一个存放整形变量a的地址
if(!b){ g = a ; x = ; y = ;} // g用来存储gcd(a,b)的值
else { exgcd(b , a%b , g , y , x) ; y -= x * (a/b) ; }
} void work(int a , int b , int d ,int& g , int& x , int& y){
exgcd(a,b,g,x,y); //此处的x,y接收 ax+by=gcd(a,b)的值
x *= d/g; //求ax+by=c 的解x
// y *= d/g; //求ax+by=c 的解y
int t = b/g;
x = (x%t + t) % t; //求出最小非负整数
y = abs( (a*x - d) / b); //求相对应的y,取绝对值是为了当左边砝码数 x 为零的时候,得出来的 y 是正整数。
/* //以下是先求y再求对应的x 。
int t = a/g;
y = (y%t + t) % t;
x = abs( (d + b*y) / a);
*/
} int main(){
int a,b,d,g,x1,x2,y1,y2;
while(cin>>a>>b>>d){
if(a==&&b==&&d==)break;
work(a,b,d,g,x1,y1);
work(b,a,d,g,x2,y2);
if( x1+y1 < x2+y2 )
cout<<x1<<" "<<y1<<endl;
else
cout<<y2<<" "<<x2<<endl; //(注意顺序)
}
return ;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
poj2142-The Balance(扩展欧几里德算法)的更多相关文章
- POJ2142 The Balance (扩展欧几里德)
本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia The Balance 题目大意 你有一个天平(天平左右两边都可以放砝码)与重量为a,b(1<= ...
- POJ-2142 The Balance 扩展欧几里德(+绝对值和最小化)
题目链接:https://cn.vjudge.net/problem/POJ-2142 题意 自己看题吧,懒得解释 思路 第一部分就是扩展欧几里德 接下来是根据 $ x=x_0+kb', y=y_0- ...
- poj2142 The Balance 扩展欧几里德的应用 稍微还是有点难度的
题目意思一开始没理解,原来是 给你重为a,b,的砝码 求测出 重量为d的砝码,a,b砝码可以无限量使用 开始时我列出来三个方程 : a*x+b*y=d; a*x-b*y=d; b*y-ax=d; 傻眼 ...
- (扩展欧几里德算法)zzuoj 10402: C.机器人
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...
- 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...
- poj2115-C Looooops(扩展欧几里德算法)
本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...
- poj1061-青蛙的约会(扩展欧几里德算法)
一,题意: 两个青蛙在赤道上跳跃,走环路.起始位置分别为x,y. 每次跳跃距离分别为m,n.赤道长度为L.两青蛙跳跃方向与次数相同的情况下, 问两青蛙是否有方法跳跃到同一点.输出最少跳跃次数.二,思路 ...
- HDU 1576 A/B 扩展欧几里德算法
A/B Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- ACM_扩展欧几里德算法
<pre name="code" class="cpp">/* 扩展欧几里德算法 基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表 ...
随机推荐
- 01 HTML基础
HTML就是超文本标记语言的简写,是最基础的网页语言. 通过标签定义的语言,代码都是由标签所组成的.(最重要的标签是定义标题.段落和换行的标签) 不区分大小写 head部分是给html页面增加一些辅助 ...
- Spring Boot 集成MyBatis
http://blog.csdn.net/isea533/article/details/50359390
- Java学习——开端
学号 <Java程序设计>第1周学习总结(1) 教材学习内容总结(第一章) Java最早是由Sun公司研发,原称Oak(橡树),开发者之一的James Gosling被尊称为Java之父. ...
- MFC 打开链接的方法
第一种: system("start explorer http://http://www.baidu.com"); 第二种: ShellExecute(NULL, NULL, _ ...
- EF框架step by step(5)—处理实体简单属性
EF框架会对实体进行跟踪,对实体的每个属性当前值和原始值及其状态进行跟踪,记录.当前值是指实体属性当前的被赋予的值,而原始值是指实体最初从数据库读取或者附加到DbContext时的值. 先通过简单的代 ...
- CF#335 Lazy Student
Lazy Student time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...
- iOS数据持久化文件读写之偏好设置
很多iOS应用都支持偏好设置,比如保存用户名.密码.字体大小等设置,iOS提供了一套标准的解决方案来为应用加入偏好设置功能.每个应用都有个NSUserDefaults实例,通过它来存取偏好设置.比如, ...
- django base.html
<!DOCTYPE html> <html> <head> <title>{% block title %}默认标题{% endblock %} - 自 ...
- HDU 1754区间最值 & SPLAY
真是亲切的1754啊..第一道傻逼版的线段树做的是这个,后来学了zkw做的是这个,在后来决定打lrj线段树又打了一遍,如今再用splay和老朋友见面 从上到下依次为:加了读入优化的splay,sp ...
- [知识点]Cantor展开
// 此博文为迁移而来,写于2015年3月14日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vtyo.html 1.含 ...