caffe的python接口学习(7):绘制loss和accuracy曲线
使用python接口来运行caffe程序,主要的原因是python非常容易可视化。所以不推荐大家在命令行下面运行python程序。如果非要在命令行下面运行,还不如直接用 c++算了。
推荐使用jupyter notebook,spyder等工具来运行python代码,这样才和它的可视化完美结合起来。
因为我是用anaconda来安装一系列python第三方库的,所以我使用的是spyder,与matlab界面类似的一款编辑器,在运行过程中,可以查看各变量的值,便于理解,如下图:
只要安装了anaconda,运行方式也非常方便,直接在终端输入spyder命令就可以了。
在caffe的训练过程中,我们如果想知道某个阶段的loss值和accuracy值,并用图表画出来,用python接口就对了。
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 19 16:22:22 2016 @author: root
""" import matplotlib.pyplot as plt
import caffe
caffe.set_device(0)
caffe.set_mode_gpu()
# 使用SGDSolver,即随机梯度下降算法
solver = caffe.SGDSolver('/home/xxx/mnist/solver.prototxt') # 等价于solver文件中的max_iter,即最大解算次数
niter = 9380
# 每隔100次收集一次数据
display= 100 # 每次测试进行100次解算,10000/100
test_iter = 100
# 每500次训练进行一次测试(100次解算),60000/64
test_interval =938 #初始化
train_loss = zeros(ceil(niter * 1.0 / display))
test_loss = zeros(ceil(niter * 1.0 / test_interval))
test_acc = zeros(ceil(niter * 1.0 / test_interval)) # iteration 0,不计入
solver.step(1) # 辅助变量
_train_loss = 0; _test_loss = 0; _accuracy = 0
# 进行解算
for it in range(niter):
# 进行一次解算
solver.step(1)
# 每迭代一次,训练batch_size张图片
_train_loss += solver.net.blobs['SoftmaxWithLoss1'].data
if it % display == 0:
# 计算平均train loss
train_loss[it // display] = _train_loss / display
_train_loss = 0 if it % test_interval == 0:
for test_it in range(test_iter):
# 进行一次测试
solver.test_nets[0].forward()
# 计算test loss
_test_loss += solver.test_nets[0].blobs['SoftmaxWithLoss1'].data
# 计算test accuracy
_accuracy += solver.test_nets[0].blobs['Accuracy1'].data
# 计算平均test loss
test_loss[it / test_interval] = _test_loss / test_iter
# 计算平均test accuracy
test_acc[it / test_interval] = _accuracy / test_iter
_test_loss = 0
_accuracy = 0 # 绘制train loss、test loss和accuracy曲线
print '\nplot the train loss and test accuracy\n'
_, ax1 = plt.subplots()
ax2 = ax1.twinx() # train loss -> 绿色
ax1.plot(display * arange(len(train_loss)), train_loss, 'g')
# test loss -> 黄色
ax1.plot(test_interval * arange(len(test_loss)), test_loss, 'y')
# test accuracy -> 红色
ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r') ax1.set_xlabel('iteration')
ax1.set_ylabel('loss')
ax2.set_ylabel('accuracy')
plt.show()
最后生成的图表在上图中已经显示出来了。
caffe的python接口学习(7):绘制loss和accuracy曲线的更多相关文章
- Caffe---Pycaffe 绘制loss和accuracy曲线
Caffe---Pycaffe 绘制loss和accuracy曲线 <Caffe自带工具包---绘制loss和accuracy曲线>:可以看出使用caffe自带的工具包绘制loss曲线和a ...
- Caffe---自带工具 绘制loss和accuracy曲线
Caffe自带工具包---绘制loss和accuracy曲线 为什么要绘制loss和accuracy曲线?在训练过程中画出accuracy 和loss曲线能够更直观的观察网络训练的状态,以便更好的优化 ...
- caffe的python接口学习(1):生成配置文件
caffe是C++语言写的,可能很多人不太熟悉,因此想用更简单的脚本语言来实现.caffe提供matlab接口和python接口,这两种语言就非常简单,而且非常容易进行可视化,使得学习更加快速,理解更 ...
- Caffe学习系列(19): 绘制loss和accuracy曲线
如同前几篇的可视化,这里采用的也是jupyter notebook来进行曲线绘制. // In [1]: #加载必要的库 import numpy as np import matplotlib.py ...
- caffe的python接口学习(4):mnist实例---手写数字识别
深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 ...
- caffe的python接口学习(6)用训练好的模型caffemodel分类新图片
经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测. 我们从mnist数据集的t ...
- caffe的python接口学习(4)mnist实例手写数字识别
以下主要是摘抄denny博文的内容,更多内容大家去看原作者吧 一 数据准备 准备训练集和测试集图片的列表清单; 二 导入caffe库,设定文件路径 # -*- coding: utf-8 -*- im ...
- caffe的python接口学习(6):用训练好的模型(caffemodel)来分类新的图片
经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测. 我们从mnist数据集的t ...
- caffe的python接口学习(2):生成solver文件
caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面,如下: base_lr: 0.001 display: 782 gamma: 0.1 ...
随机推荐
- pt-table-checksum
pt-table-checksum是percona公司提供的一个用于在线比对主从数据一致性的工具. 实现原理 将一张大表分成多个chunk,每次针对一个chunk进行校验,同时将校验的结果通过REPL ...
- 数据库的快照隔离级别(Snapshot Isolation)
隔离级别定义事务处理数据读取操作的隔离程度,在SQL Server中,隔离级别只会影响读操作申请的共享锁(Shared Lock),而不会影响写操作申请的互斥锁(Exclusive Lock),隔离级 ...
- Hyper-V2:向VM增加虚拟硬盘
使用Hyper-V创建VM,在VM成功安装OS之后,发现VM只有一个逻辑盘C,用于存储VM的操作系统.在产品环境中,需要向VM增加虚拟硬盘,便于将数据单独存储在不同的逻辑盘符中.在Hyper-V中,分 ...
- html与html5
HTML 是一种在 Web 上使用的通用标记语言.HTML 允许你格式化文本,添加图片,创建链接.输入表单.框架和表格等等,并可将之存为文本文件,浏览器即可读取和显示.HTML 的关键是标签,其作用是 ...
- Entity Framework 延伸系列目录
1.采用MiniProfiler监控EF与.NET MVC项目 2.采用EntityFramework.Extended 对EF进行扩展 3.EntityFramework执行存储过程中遇到的那些坑 ...
- PHP static静态属性和静态方法
这里分析了php面向对象中static静态属性和静态方法的调用.关于它们的调用(能不能调用,怎么样调用),需要弄明白了他们在内存中存放位置,这样就非常容易理解了.静态属性.方法(包括静态与非静态)在内 ...
- 如何给FineReport设置自定义消息提醒工具
FineReport设计器有自动的消息推送功能,可设置报表定时推送和常规的日报周报推送.官方有自己的消息推送的接口,不过有些用户旺旺希望自己开发,符合自己需求的推送界面. 下面这个方案就从逻辑层面简单 ...
- excel常用技巧
复制表格时,如果要加上行标和列标.页面布局->工作表选项:标题,勾上打印->复制下拉框->复制为图片加上打印样式 一行长拆成几行短或几行短变成一行长的文本拆分,可以通过:填充-> ...
- Java版本:识别Json字符串并分隔成Map集合
前言: 最近又看了点Java的知识,于是想着把CYQ.Data V5迁移到Java版本. 过程发现坑很多,理论上看大部分很相似,实践上代码写起来发现大部分都要重新思考方案. 遇到的C#转Java的一些 ...
- 在ABP中创建Person实体类
经过之前的准备目前我们的项目,终于可以搞正式的开发工作了. 创建实体Person 在Core类库中添加Person类 /// <summary> /// 联系人 /// </summ ...