paper 112:hellinger distance
在概率论和统计理论中,Hellinger距离被用来度量两个概率分布的相似度。它是f散度的一种(f散度——度量两个概率分布相似度的指标)。Hellinger距离被定义成Hellinger积分的形式,这种形式由Ernst Hellinger在1909年引进。
目录
·1 定义
·1.1 度量理论
·1.2 基于Lebesgue度量的概率理论
·1.3 离散概率分布
·2 性质
·3 例子
1 定义
1.1 度量理论
为了从度量理论的角度定义Hellinger距离,我们假设P和Q是两个概率测度,并且它们对于第三个概率测度λ来说是绝对连续的,则P和Q的Hellinger距离的平方被定义如下:

这里的dP / dλ 和 dQ / dλ分别是P和Q的Radon–Nikodym微分。这里的定义是与λ无关的,因此当我们用另外一个概率测度替换λ时,只要P和Q关于它绝对连续,那么上式就不变。为了简单起见,我们通常把上式改写为:

1.2 基于Lebesgue度量的概率理论
为了在经典的概率论框架下定义Hellinger距离,我们通常将λ定义为Lebesgue度量,此时dP / dλ 和 dQ / dλ就变为了我们通常所说的概率密度函数。如果我们把上述概率密度函数分别表示为 f 和 g ,那么可以用以下的积分形式表示Hellinger距离:

上述等式可以通过展开平方项得到,注意到任何概率密度函数在其定义域上的积分为1。
根据柯西-施瓦茨不等式(Cauchy-Schwarz inequality),Hellinger距离满足如下性质:

1.3 离散概率分布
对于两个离散概率分布 P=(p1,p2,...,pn)和 Q=(q1,q2,...,qn),它们的Hellinger距离可以定义如下:

上式可以被看作两个离散概率分布平方根向量的欧式距离,如下所示:

2. 性质
Hellinger距离的最大值1只有在如下情况下才会得到:P在Q为零的时候是非零值,而在Q为非零值的时候是零,反之亦然。
有时公式之前的系数1/2会被省略,此时Hellinger距离的范围变为从0到2的平方根。
Hellinger距离可以跟Bhattacharyya系数BC(P,Q)联系起来,此时它可以被定义为:

Hellinger距离通常在顺序和渐进统计中使用。
3. 例子
两个正态分布P 和 Q的Hellinger距离的平方可以被定义为:

两个指数分布P 和 Q的Hellinger距离的平方可被定义为:

两个威利分布P 和 Q(此处k是一个形状参数,α和β是尺度系数)的Hellinger距离的平方可被定义为:

对于两个具有参数α和β的泊松分布 P 和 Q,它们的Hellinger距离可被定义为:

上述内容来自wikipedia
http://en.wikipedia.org/wiki/Hellinger_distance#mw-head
paper 112:hellinger distance的更多相关文章
- paper 114:Mahalanobis Distance(马氏距离)
(from:http://en.wikipedia.org/wiki/Mahalanobis_distance) Mahalanobis distance In statistics, Mahalan ...
- paper 113:Bhattacharyya distance
在统计理论中,Bhattacharyya距离用来度量两个离散或连续概率分布的相似性.它与Bhattacharyya系数(Bhattacharyya coefficient)高度相关,后者是用来度量两个 ...
- 科普:浅谈 Hellinger Distance
浅谈 Hellinger Distance 2016.05.24 最近在看 Hellinger Distance(海林格距离), 平时看多了欧式距离,马氏距离等等,貌似介绍这个的材料不是很多,例如:维 ...
- paper 156:专家主页汇总-计算机视觉-computer vision
持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepa ...
- paper 141:some paper with ComputerCV、MachineLearning[转]
copy from:http://blog.csdn.net/zouxy09/article/details/8550952 一.特征提取Feature Extraction: · S ...
- paper 97:异质人脸识别进展的资讯
高新波教授团队异质人脸图像识别研究取得新突破,有望大大降低刑侦过程人力耗费并提高办案效率 近日,西安电子科技大学高新波教授带领的研究团队,在异质人脸图像识别研究领域取得重要进展,其对香 ...
- paper 94:视觉领域博客资源1之中国部分
这是收录的图像视觉领域的博客资源的第一部分,包含:中国内地.香港.台湾 这些名人大家一般都熟悉,本文仅收录了包含较多资料的个人博客,并且有不少更新,还有些名人由于分享的paper.code或者数据集不 ...
- paper 92:图像视觉博客资源2之MIT斯坦福CMU
收录的图像视觉(也包含机器学习等)领域的博客资源的第二部分,包含:美国MIT.斯坦福.CMU三所高校 1)这些名人大家一般都熟悉,本文仅收录了包含较多资料的个人博客,并且有不少更新,还有些名人由于分享 ...
- paper 91:边缘检测近期最新进展的讨论
VALSE QQ群对边缘检测近期最新进展的讨论,内容整理如下: 1)推荐一篇deep learning的文章,该文章大幅度提高了edge detection的精度,在bsds上,将edge detec ...
随机推荐
- 使用C#实现FTP的文件上传和下载【转】
参考博文:http://blog.163.com/mity_rui@126/blog/static/1098136182013101525615577/
- Crossing River
Crossing River 题目链接:http://acm.hust.edu.cn/vjudge/problem/visitOriginUrl.action?id=26251 题意: N个人希望去过 ...
- Objective-c的内存管理MRC与ARC
Objective-c的内存管理MRC与ARC Objective-c中提供了两种内存管理机制MRC(MannulReference Counting)和ARC(Automatic Referen ...
- Load Mental Ray in Maya 2015
In Maya 2015, we usually use mental ray to render our model, some new users may not see the mental r ...
- android-Intent and IntentFilter
一.Intent简介 Android使用Intent来封装程序的调用"意图",Activity.Service.BroadcastReceiver三种重要的组件都是依靠Intent ...
- 自己做的一个小demo
上图: 主段代码: <script type="text/javascript"> var getRandomColor = function(){ return (f ...
- 给ListView视图添加行号
最后的效果如下: 更新,集成一个独立的模块而不改变源文件的方式更为稳妥. 购买地址:https://item.taobao.com/item.htm?spm=a1z10.3-c.w4002-26531 ...
- js 进度条,可实现结束和重新开始
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...
- Oracle索引简单介绍与示例
索引的三大特性 1索引高度 在SQL检索数据(SELECT)的时候,索引的高度的不同对检索的效率有明显的差别,数据库访问索引需要读取的数据块通常是索引的高度+1个数据块数,也就是说索引的高度越高,访问 ...
- firebox httprequester 模拟请求
获取下载插件 httprequester 模拟POST请求,必须点击Parameter Body 参数写法:abc=123&id=456 也可以选择Headers栏目添加