hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律
http://acm.hdu.edu.cn/showproblem.php?pid=4965
1006
Fast Matrix CalculationTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Problem Description
One day, Alice and Bob felt bored again, Bob knows Alice is a girl
who loves math and is just learning something about matrix, so he decided to make a crazy problem for her. Bob has a six-faced Step 1: Calculate a new N*N matrix C = A*B. Bob just made this problem for kidding but he sees Alice taking it Input
The input contains several test cases. Each test case starts with two
integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B. The end of input is indicated by N = K = 0. Output
For each case, output the sum of all the elements in M’ in a line.
Sample Input
4 2
5 5 4 4 5 4 0 0 4 2 5 5 1 3 1 5 6 3 1 2 3 0 3 0 2 3 4 4 3 2 2 5 5 0 5 0 3 4 5 1 1 0 5 3 2 3 3 2 3 1 5 4 5 2 0 0 Sample Output
14
56 Source
Recommend
|
题意:给出n*k的矩阵A和k*n的B,求(AB)^(n*n)结果矩阵中各元素模6 之和。(n<=1000,k<=6)
题解:(A*B)^(n*n)=A * (B*A)^(n*n-1) * B,(B*A)是k*k的矩阵,k最大只有6,简直碉炸,矩阵快速幂就行了。
之前的多校训练也有一题hdu4920,是模3矩阵乘法:http://www.cnblogs.com/yuiffy/p/3893018.html
在那题中我已经研究了各种矩阵乘法的优化,例如要kij循环而不是ijk循环,对一个小数取模的话会有很多0,可以在第二重循环中if(a[i][k]==0)就跳出,而且由于取模后数字很少,可以直接用一个三维数组l[i][j][k]来事先运算好 (i+j*k)%MOD,这样我们就又不用乘法又不用取模,简直极速。
但是这题如果直接(A*B)^(n*n)的话,就算已经极速优化了还是不行,我都怕。
代码:
//#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;
#define ll long long
#define usll unsigned ll
#define mz(array) memset(array, 0, sizeof(array))
#define minf(array) memset(array, 0x3f, sizeof(array))
#define REP(i,n) for(i=0;i<(n);i++)
#define FOR(i,x,n) for(i=(x);i<=(n);i++)
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define WN(x) prllf("%d\n",x);
#define RE freopen("D.in","r",stdin)
#define WE freopen("1biao.out","w",stdout)
#define mp make_pair
#define pb push_back int A[][];
int B[][];
int C[][];
int D[][];
int n,K; int liu[][][]; void check(int A[][],int n){
int i,j;
for(i=;i<n;i++){
for(j=;j<n;j++)
printf("%2d",A[i][j]);
puts("");
}
} int F[][]; void chen2(int C[][],const int A[][],const int B[][],const int n,const int m,const int K) {
int i,j,k;
for(i=;i<n;i++)
for(j=;j<m;j++)
F[i][j]=;
//cout<<n<<','<<m<<','<<K<<endl;
for(k=; k<K; k++)
for(i=; i<n; i++){
if(A[i][k]==)continue;
for(j=; j<m; j++) {
//F[i][j]+=A[i][k]*B[k][j];
F[i][j]=liu[ F[i][j] ][ A[i][k] ][ B[k][j] ];
//printf("F[%d][%d]+=A[%d][%d]*B[%d][%d]=%d*%d %d\n",i,j,i,k,k,j,A[i][k],B[k][j],F[i][j]);
}
}
for(i=;i<n;i++)
for(j=;j<m;j++)
C[i][j]=F[i][j];
} void powmod(int C[][],int x,int K,int D[][]) {
int i,j,k;
mz(D);
for(i=;i<K;i++)
D[i][i]=;
while(x) {
if(x&)chen2(D,D,C,K,K,K);
// puts("D:");
// check(D,K);
// puts("C:");
// check(C,K);
// printf("x=%d=%xH\n",x,x);
x>>=;
chen2(C,C,C,K,K,K);
}
} int biu[]; void init(){
int i,j,k;
for(i=;i<;i++)
for(j=;j<;j++)
for(k=;k<;k++)
liu[i][j][k]=(i+j*k)%;
for(i=;i<;i++)
biu[''+i]=i;
} char ch;
inline void read(int &x){
while(!((((ch = getchar()) >= '') && (ch <= ''))));
x=biu[ch];
} int main() {
int i,j;
init();
while(scanf("%d%d",&n,&K)!=EOF) {
mz(A);mz(B);mz(C);mz(D);
if(n== && K==)break;
for(i=; i<n; i++)
for(j=; j<K; j++)
read(A[i][j]);
for(i=; i<K; i++)
for(j=; j<n; j++)
read(B[i][j]);
chen2(C,B,A,K,n,n);
//chen2(C,A,B,n,n,K);
//check(C,n);
powmod(C,n*n-,K,D);
//powmod(C,n*n,n,D);
//check(D,K);
chen2(D,A,D,n,K,K);
chen2(D,D,B,n,n,K);
//check(D,n);
int ans=;
for(i=;i<n;i++)
for(j=;j<n;j++)
ans+=D[i][j];
printf("%d\n",ans);
}
return ;
}
hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律的更多相关文章
- hdu4965 Fast Matrix Calculation 矩阵快速幂
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...
- HDU 4965 Fast Matrix Calculation 矩阵快速幂
题意: 给出一个\(n \times k\)的矩阵\(A\)和一个\(k \times n\)的矩阵\(B\),其中\(4 \leq N \leq 1000, \, 2 \leq K \leq 6\) ...
- Fast Matrix Calculation 矩阵快速幂
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...
- HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂
题目链接:https://vjudge.net/problem/HDU-4965 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Othe ...
- hdu 4965 Fast Matrix Calculation(矩阵高速幂)
题目链接.hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N. 矩阵C = A*B 矩阵M=CN∗N 将矩阵M中的全部元素取模6,得到 ...
- ACM学习历程——HDU5015 233 Matrix(矩阵快速幂)(2014陕西网赛)
Description In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 2 ...
- bzoj 4128: Matrix ——BSGS&&矩阵快速幂&&哈希
题目 给定矩阵A, B和模数p,求最小的正整数x满足 A^x = B(mod p). 分析 与整数的离散对数类似,只不过普通乘法换乘了矩阵乘法. 由于矩阵的求逆麻烦,使用 $A^{km-t} = B( ...
- HDU 4965 Fast Matrix Calculation 矩阵乘法 乘法结合律
一种奇葩的写法,纪念一下当时的RE. #include <iostream> #include <cstdio> #include <cstring> #inclu ...
- HDU_4965 Fast Matrix Calculation 2014多校9 矩阵快速幂+机智的矩阵结合律
一开始看这个题目以为是个裸的矩阵快速幂的题目, 后来发现会超时,超就超在 M = C^(N*N). 这个操作,而C本身是个N*N的矩阵,N最大为1000. 但是这里有个巧妙的地方就是 C的来源其实 ...
随机推荐
- K-means之matlab实现
引入 作为练手,不妨用matlab实现K-means 要解决的问题:n个D维数据进行聚类(无监督),找到合适的簇心. 这里仅考虑最简单的情况,数据维度D=2,预先知道簇心数目K(K=4) 理论步骤 关 ...
- kali2016.2源
最近中科大的源出了问题,官方源又会重定向到意大利. 一下源目前亲测可用:kali2016.2源 清华大学 deb http://mirrors.tuna.tsinghua.edu.cn/kali ka ...
- Jenkins 2.x新建节点配置(Windows)
2.0版本以上默认加入了权限插件,所以在进入主界面时是需要登录的. 一.主界面->[系统管理]->[管理节点]->[新建节点],进行节点的添加: 二.输入节点名称,已经选择[Perm ...
- crawler:简要了解一下PhantomJS
有时,我们需要浏览器处理网页,但并不需要浏览,比如生成网页的截图.抓取网页数据等操作.PhantomJS的功能,就是提供一个浏览器环境的命令行接口,你可以把它看作一个“虚拟浏览器”,除了不能浏览,其他 ...
- POJ 2386 Lake Counting(深搜)
Lake Counting Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 17917 Accepted: 906 ...
- 重写Object类中的equals方法
Object是所有类的父亲,这个类有很多方法,我们都可以直接调用,但有些方法并不适合,例如下面的student类 public class Student { //姓名.学号.年纪 private S ...
- JPA mysql wildfly jboss 存储时乱码
首先确保mysql的库,表创建时指定的字符集collation. 可以直接用命令行插入中文,看查询出来是不是中文. insert into live_main_sync (cn_name, creat ...
- Struts学习总结-04 上传文件
1. upload.jsp <%@ page language="java" import="java.util.*" pageEncoding=&quo ...
- JavaScriptCore框架介绍
http://www.cocoachina.com/ios/20140409/8127.html 这个框架其实只是基于webkit中以C/C++实现的JavaScriptCore的一个包装,在旧版本i ...
- openssl生成https证书 (转)
1.首先要生成服务器端的私钥(key文件):openssl genrsa -des3 -out server.key 1024运行时会提示输入密码,此密码用于加密key文件去除key文件口令的命令:o ...