CF#335 Intergalaxy Trips
2 seconds
256 megabytes
standard input
standard output
The scientists have recently discovered wormholes — objects in space that allow to travel very long distances between galaxies and star systems.
The scientists know that there are n galaxies within reach. You are in the galaxy number 1 and you need to get to the galaxy number n. To get from galaxy i to galaxy j, you need to fly onto a wormhole (i, j) and in exactly one galaxy day you will find yourself in galaxy j.
Unfortunately, the required wormhole is not always available. Every galaxy day they disappear and appear at random. However, the state of wormholes does not change within one galaxy day. A wormhole from galaxy i to galaxy j exists during each galaxy day taken separately with probability pij. You can always find out what wormholes exist at the given moment. At each moment you can either travel to another galaxy through one of wormholes that exist at this moment or you can simply wait for one galaxy day to see which wormholes will lead from your current position at the next day.
Your task is to find the expected value of time needed to travel from galaxy 1 to galaxy n, if you act in the optimal way. It is guaranteed that this expected value exists.
The first line of the input contains a single integer n (1 ≤ n ≤ 1000) — the number of galaxies within reach.
Then follows a matrix of n rows and n columns. Each element pij represents the probability that there is a wormhole from galaxy i to galaxy j. All the probabilities are given in percents and are integers. It is guaranteed that all the elements on the main diagonal are equal to 100.
Print a single real value — the expected value of the time needed to travel from galaxy 1 to galaxy n if one acts in an optimal way. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.
Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if
.
3
100 50 50
0 100 80
0 0 100
1.750000000000000
2
100 30
40 100
3.333333333333333
In the second sample the wormhole from galaxy 1 to galaxy 2 appears every day with probability equal to 0.3. The expected value of days one needs to wait before this event occurs is
.
题意:有n个点,每天可以从i到j的概率是P(i, j),每天也可以选择留在原地,问去到n的期望天数。
分析:这题是这样的。
如果我们从终点往前推,会简单很多。因为从前往后的话很难确定有哪些点转移到自身。
从终点开始的话,显然一开是在终点的天数是0。
又发现,每个点显然只能从更优(期望更小)的点转移到自己。
由于是从后往前推,所以这意味这已经推过的点不会再推。
所以,这是一个类似最短路的过程。
推的过程是这样的
设比x点优秀的点是v[1],v[2].....v[c]
那么x的期望显然满足
dp[x] = dp[v[1]] * p(x, v[1]) + dp[v[2]] * p(x, v[2]) * (1 - p(x, v[1]) ) + dp[v[3]] * p(x, v[3]) * (1 - p(x, v[2]) ) * (1 - p(x, v[1]) ) + ..... + dp[v[c]] * p(x, v[c]) * (1 - p(x, v[2]) ) * (1 - p(x, v[1]) ) * ..... * (1 - p(x, v[c - 1])) + dp[x] * (1 - p(x, v[2]) ) * (1 - p(x, v[1]) ) * ..... * (1 - p(x, v[c])) + 1
其中(1 - p(x, v[2]) ) * (1 - p(x, v[1]) ) * ..... * (1 - p(x, v[c]))是它留在原地的概率。
然后变形
dp[x] = ( dp[v[1]] * p(x, v[1]) + dp[v[2]] * p(x, v[2]) * (1 - p(x, v[1]) ) + dp[v[3]] * p(x, v[3]) * (1 - p(x, v[2]) ) * (1 - p(x, v[1]) ) + ..... + dp[v[c]] * p(x, v[c]) * (1 - p(x, v[2]) ) * (1 - p(x, v[1]) ) * ..... * (1 - p(x, v[c - 1])) + 1 ) / (1 - (1 - p(x, v[2]) ) * (1 - p(x, v[1]) ) * ..... * (1 - p(x, v[c])) )
这样就可以转移了。。。
/**
Create By yzx - stupidboy
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <ctime>
#include <iomanip>
using namespace std;
typedef long long LL;
typedef double DB;
#define MIT (2147483647)
#define INF (1000000001)
#define MLL (1000000000000000001LL)
#define sz(x) ((int) (x).size())
#define clr(x, y) memset(x, y, sizeof(x))
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define mk make_pair inline int Getint()
{
int Ret = ;
char Ch = ' ';
bool Flag = ;
while(!(Ch >= '' && Ch <= ''))
{
if(Ch == '-') Flag ^= ;
Ch = getchar();
}
while(Ch >= '' && Ch <= '')
{
Ret = Ret * + Ch - '';
Ch = getchar();
}
return Flag ? -Ret : Ret;
} const DB EPS = 1e-;
const int N = ;
int n, data[N][N];
DB dp[N], stay[N], cnt[N];
bool visit[N]; inline void Input()
{
scanf("%d", &n);
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
scanf("%d", &data[i][j]);
} inline void Solve()
{
for(int i = ; i <= n; i++) dp[i] = INF, stay[i] = 1.0, cnt[i] = 0.0;
dp[n] = ;
for(int k = ; k <= n; k++)
{
int idx = -;
DB mn = INF;
for(int i = ; i <= n; i++)
if(!visit[i] && mn >= dp[i])
mn = dp[i], idx = i; if(idx == )
{
printf("%.12lf\n", dp[]);
break;
} visit[idx] = ;
for(int i = ; i <= n; i++)
if(!visit[i])
{
cnt[i] += stay[i] * dp[idx] * (0.01 * data[i][idx]);
stay[i] *= - 0.01 * data[i][idx];
if(fabs( - stay[i]) > EPS)
dp[i] = ( + cnt[i]) / ( - stay[i]);
}
}
} int main()
{
freopen("a.in", "r", stdin);
Input();
Solve();
return ;
}
CF#335 Intergalaxy Trips的更多相关文章
- 【CF605E】Intergalaxy Trips(贪心,动态规划)
[CF605E]Intergalaxy Trips(贪心,动态规划) 题面 Codeforces 洛谷 有\(n\)个点,每个时刻第\(i\)个点和第\(j\)个点之间有\(p_{ij}\)的概率存在 ...
- CodeForces 605 E. Intergalaxy Trips
E. Intergalaxy Trips time limit per test:2 seconds memory limit per test:256 megabytes input:standar ...
- CF605E Intergalaxy Trips
CF605E Intergalaxy Trips 考虑你是不知道后来的边的出现情况的,所以可以这样做:每天你都选择一些点进行观察,知道某天往这些点里面的某条边可用了,你就往这条边走.这样贪心总是对的. ...
- CF#335 Freelancer's Dreams
Freelancer's Dreams time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- CF#335 Board Game
Board Game time limit per test 2.5 seconds memory limit per test 256 megabytes input standard input ...
- CF#335 Lazy Student
Lazy Student time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...
- CF#335 Sorting Railway Cars
Sorting Railway Cars time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- CF #335 div1 A. Sorting Railway Cars
题目链接:http://codeforces.com/contest/605/problem/A 大意是对一个排列进行排序,每一次操作可以将一个数字从原来位置抽出放到开头或结尾,问最少需要操作多少次可 ...
- [Codeforces]605E Intergalaxy Trips
小C比较棘手的概率期望题,感觉以后这样的题还会贴几道出来. Description 给定一个n*n的邻接矩阵,邻接矩阵中元素pi,j表示的是从 i 到 j 这条单向道路在这一秒出现的概率百分比,走一条 ...
随机推荐
- C++异常层次结构图
- webservice 简单入门 (NLY)
1,创建webservice服务器端 搭建网站,创建webservice webservice.cs中的代码 namespace WebApplication1 { /// <summary&g ...
- mysql 查看用户的权限
show grants for 'username'@'%';
- 【JAVA与XML、dtd约束、Schema约束】
一.XML. (1)XML:Extensible Markup Language (2)XML是一种标记语言. (3)XML的设计宗旨是传输数据,而不是显示数据. (4)XML标签没有被预定义,即使用 ...
- android 面试题
一,什么是OOM (1)先从定义开始:Android(Java)中常见的容易引起内存泄漏的不良代码Android主要应用在嵌入式设备当中,而嵌入式设备由于一些众所周知的条件限制,通常都不会有很高的配置 ...
- C语言中的static 详细分析
转自:http://blog.csdn.net/keyeagle/article/details/6708077/ google了近三页的关于C语言中static的内容,发现可用的信息很少,要么长篇大 ...
- HDU 3364 Lanterns 高斯消元
Lanterns Problem Description Alice has received a beautiful present from Bob. The present contains ...
- 数据分析(4):Scipy
科学计算 最小二乘leastsq # -*- coding: utf-8 -*- def func(x,p): # p 参数列表 A,k,theta = p; # 可以一一对应赋值 return A* ...
- Linux学习笔记(14)文件系统管理
1 回顾分区与系统 (1)分区类型 Linux的分区一般包括主分区,扩展分区和逻辑分区.其中: 主分区最多只能分4个: 扩展分区只能有一个,也算作主分区的一种,即主分区加扩展分区最多有4个.但扩展分区 ...
- Linux学习笔记(4)Linux常用命令之权限管理命令
(1)chmod chmod命令用于改变文件或目录权限,英文原意为change the permissions mode of a file,所在路径为/bin/chmod,其语法格式为: chmod ...