A. Alternative Thinking
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiad—'1' for a correctly identified cow and '0' otherwise.

However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as anot-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and{1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not.

Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substring—that is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have.

Input

The first line contains the number of questions on the olympiad n (1 ≤ n ≤ 100 000).

The following line contains a binary string of length n representing Kevin's results on the USAICO.

Output

Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring.

Sample test(s)
input
8
10000011
output
5
input
2
01
output
2
Note

In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'.

In the second sample, Kevin can flip the entire string and still have the same score.

题意:给出1个01串,必须将某一段取反,问选择一个1、0间隔的子序列,最长有多长?

分析:

  我真是傻逼。

  我想了个dp,dp[i]表示前i个中,取反的那个串最后一个数是第i个,的答案。

  预处理两个数组,front[i]表示不修改的前i个的答案,back[i]表示不修改的i~n的答案。

  那么转移显然

dp[i] = max(dp[i - 1] + (arr[i] ^ arr[i - 1]),  front[i - 1] + (arr[i] == arr[i - 1]));

前一个表示修改的是一段的情况,后一个代表只修改第i个的情况。

答案为
ans = max(ans, dp[i] + back[i + 1]);

 /**
Create By yzx - stupidboy
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <ctime>
#include <iomanip>
using namespace std;
typedef long long LL;
typedef double DB;
#define MIT (2147483647)
#define INF (1000000001)
#define MLL (1000000000000000001LL)
#define sz(x) ((int) (x).size())
#define clr(x, y) memset(x, y, sizeof(x))
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define mk make_pair inline int Getint()
{
int Ret = ;
char Ch = ' ';
bool Flag = ;
while(!(Ch >= '' && Ch <= ''))
{
if(Ch == '-') Flag ^= ;
Ch = getchar();
}
while(Ch >= '' && Ch <= '')
{
Ret = Ret * + Ch - '';
Ch = getchar();
}
return Flag ? -Ret : Ret;
} const int N = ;
int n;
string data;
bool arr[N];
int front[N], back[N], dp[N], ans; inline void Input()
{
scanf("%d", &n);
cin >> data;
} inline void Solve()
{
for(int i = ; i < n; i++) arr[i + ] = data[i] == '';
int cnt[] = {};
arr[n + ] = arr[n] ^ ;
for(int i = n; i > ; i--)
{
if(arr[i + ] ^ arr[i]) cnt[arr[i]] = cnt[arr[i] ^ ] + ;
back[i] = cnt[arr[i - ]];
}
cnt[] = cnt[] = , arr[] = arr[] ^ ;
for(int i = ; i < n; i++)
{
if(arr[i] != arr[i - ]) cnt[arr[i]] = cnt[arr[i] ^ ] + ;
front[i] = cnt[arr[i + ]];
} for(int i = ; i <= n; i++)
{
dp[i] = max(dp[i - ] + (arr[i] ^ arr[i - ]),
front[i - ] + (arr[i] == arr[i - ]));
ans = max(ans, dp[i] + back[i + ]);
}
printf("%d\n", ans);
} int main()
{
freopen("a.in", "r", stdin);
Input();
Solve();
return ;
}

可是正解简单到令人发指。

 #include <bits/stdc++.h>
using namespace std; int N, res = ;
string S; int main(){
cin >> N >> S;
for(int i = ; i < N; i++){
res += (S[i] != S[i - ]);
}
cout << min(res + , N) << '\n';
}

其实很容易理解,修改比不修改的答案最多增加2,举几个例子就知道了。。。

CF# 334 Alternative Thinking的更多相关文章

  1. CF# 334 Lieges of Legendre

    C. Lieges of Legendre time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  2. CF# 334 Moodular Arithmetic

    B. Moodular Arithmetic time limit per test 1 second memory limit per test 256 megabytes input standa ...

  3. CF 604C Alternative Thinking#贪心

    (- ̄▽ ̄)-* #include<iostream> #include<cstdio> #include<cstring> using namespace std ...

  4. CF 334 div.2-D Moodular Arithmetic

    思路: 易知k = 0的时候答案是pp-1,k = 1的时候答案是pp. 当k >= 2的时候,f(0) = 0,对于 1 <= n <= p - 1,如果f(n)确定,由题意可知f ...

  5. Codeforces Round #334 (Div. 2) C. Alternative Thinking 贪心

    C. Alternative Thinking Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/6 ...

  6. 「日常训练」Alternative Thinking(Codeforces Round #334 Div.2 C)

    题意与分析 (CodeForces - 603A) 这题真的做的我头疼的不得了,各种构造样例去分析性质... 题意是这样的:给出01字符串.可以在这个字符串中选择一个起点和一个终点使得这个连续区间内所 ...

  7. Codeforces Round #334 (Div. 2) A. Uncowed Forces 水题

    A. Uncowed Forces Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/604/pro ...

  8. CF下的BackgroudWorker组件优化.

    .net compact framwork(2.0/3.5)下没有Backgroundworder组件,在网上找了一个类 经过使用发现了一些问题,主要有一个问题:在一个Dowork事件中对Report ...

  9. 代码的坏味道(9)——异曲同工的类(Alternative Classes with Different Interfaces)

    坏味道--异曲同工的类(Alternative Classes with Different Interfaces) 特征 两个类中有着不同的函数,却在做着同一件事. 问题原因 这种情况往往是因为:创 ...

随机推荐

  1. checkbox复选框全选

    HTML: <input type="checkbox" class="all"> <input type="checkbox&qu ...

  2. 51nod1066(bash博弈)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1066 题意:中文题诶- 思路:感觉博弈全靠yy- 在双方都没有 ...

  3. Velocity笔记

  4. 设计模式学习之命令模式(Command,行为型模式)(12)

    一.命令模式的定义 命令模式属于对象的行为型模式.命令模式是把一个操作或者行为抽象为一个对象中,通过对命令的抽象化来使得发出命令的责任和执行命令的责任分隔开.命令模式的实现可以提供命令的撤销和恢复功能 ...

  5. 【JAVA常用类演示】

     一.java.lang.System类. public final class Systemextends Object 该类包含一些有用的类字段和方法.它不能被实例化. 在 System 类提供的 ...

  6. SQL中的JOIN类型解释(CROSS, INNER,OUTER),关键字ON,USING

    书上讲得明白,解了不少迷惑. SELECT e.fname, e.lname, d.name FROM employee AS e INNER JOIN department AS d ON e.de ...

  7. c++ 子类调用父类构造方法 调用父类方法 类声明与实现分离

    Person.h #pragma once #include "stdafx.h" #include<iostream> class Person { private: ...

  8. 攻城狮在路上(壹) Hibernate(十五)--- Hibernate的高级配置

    一.配置数据库连接池: 1.使用默认的数据库连接池: Hibernate提供了默认了数据库连接池,它的实现类为DriverManegerConnectionProvider,如果在Hibernate的 ...

  9. Instagram的持续部署技术

    Instagram最近发表了一篇关于他们的持续部署(CD)管道的文章,持续部署管道可以让他们更快的将代码推送到生产环境,并且轻松地识别糟糕的提交和始终保持发布可用.在一段时间内以迭代的方式放在一起,其 ...

  10. Active Record 数据库模式-增删改查操作

    选择数据 下面的函数帮助你构建 SQL SELECT语句. 备注:如果你正在使用 PHP5,你可以在复杂情况下使用链式语法.本页面底部有具体描述. $this->db->get(); 运行 ...