1369: [Baltic2003]Gem

Time Limit: 2 Sec  Memory Limit: 64 MB
Submit: 282  Solved: 180
[Submit][Status][Discuss]

Description

给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值,要求一种方案,使得整棵树的总价值最小。

Input

先给出一个数字N,代表树上有N个点,N<=10000 下面N-1行,代表两个点相连

Output

最小的总权值

Sample Input

10
7 5
1 2
1 7
8 9
4 1
9 7
5 6
10 2
9 3

Sample Output

14

HINT

Source

Solution

简单的树形DP

$dp[i][j]$表示节点$i$染颜色$j$时的最小

随便转移一下...自己一开始认为就是一层1一层2但是发现好像不对,不可能这么naive,但是又实在不知道极限是多少...

PS求路过的人教我如何证明最大为3...

Code

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 10010
int N,ans;
struct EdgeNode{int next,to;}edge[maxn<<];
int head[maxn],cnt;
void add(int u,int v)
{
cnt++;
edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].to=v;
}
void insert(int u,int v) {add(u,v); add(v,u);}
int dp[maxn][];
void DFS(int now,int fa)
{
for (int i=; i<=; i++) dp[now][i]=i;
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].to!=fa) DFS(edge[i].to,now);
for (int i=; i<=; i++)
for (int j=head[now]; j; j=edge[j].next)
if (edge[j].to!=fa)
{
int nowc=;
for (int k=; k<=; k++)
if (k!=i) nowc=nowc==?dp[edge[j].to][k]:min(nowc,dp[edge[j].to][k]);
dp[now][i]+=nowc;
}
}
int main()
{
N=read();
for (int u,v,i=; i<=N-; i++) u=read(),v=read(),insert(u,v);
DFS(,);
for (int i=; i<=; i++) ans=ans==?dp[][i]:min(ans,dp[][i]);
printf("%d\n",ans);
return ;
}

【BZOJ-1369】Gem 树形DP的更多相关文章

  1. bzoj 1369: Gem 树形dp

    题目大意 给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值,要求一种方案,使得整棵树的总价值最小.N<=10000 题解 我们可以 ...

  2. BZOJ 1369: [Baltic2003]Gem(树形dp)

    传送门 解题思路 直接按奇偶层染色是错的,\(WA\)了好几次,所以要树形\(dp\),感觉最多\(log\)种颜色,不太会证. 代码 #include<iostream> #includ ...

  3. BZOJ 1149 风铃(树形DP)

    题目描述的实际是一颗二叉树,对于每个结点,要么满叉,要么无叉. 对于一种无解的简单情况,我们搜一遍树找到最浅的叶子结点1和最深的叶子结点2,如果dep[1]<dep[2]-1,则显然无解. 所以 ...

  4. 【bzoj1369】[Baltic2003]Gem 树形dp

    题目描述 给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值,要求一种方案,使得整棵树的总价值最小. 输入 先给出一个数字N,代表树上有N ...

  5. BZOJ1369/LG4395 「BOI2003」Gem 树形DP

    问题描述 LG4395 BZOJ1369 题解 发现对于结点 \(x\) ,其父亲,自己,和所有的孩子权值不同,共 \(3\) 类,从贪心的角度考虑,肯定是填 \(1,2,3\) 这三种. 于是套路树 ...

  6. [BOI2003] Gem - 树形dp

    结论 不同颜色数不会超过 \(O(\log n)\) 然后就是很简单的树形dp了 顺便复习一下树形dp怎么写 #include <bits/stdc++.h> using namespac ...

  7. BZOJ 1369 Gem - 树型dp

    传送门 题目大意: 给一棵树上每个点一个正权值,要求父子的权值不同,问该树的最小权值和是多少. 题目分析: 证不出来最少染色数,那就直接信仰用20来dp吧:dp[u][i]表示u节点权值赋为i时u子树 ...

  8. 【BZOJ 3090】 树形DP

    3090: Coci2009 [podjela] Description 有 N 个农民, 他们住在 N 个不同的村子里. 这 N 个村子形成一棵树.每个农民初始时获得 X 的钱.每一次操作, 一个农 ...

  9. bzoj 1131 简单树形dp

    思路:随便想想就能想出来啦把...  卡了我一个vector... #include<bits/stdc++.h> #define LL long long #define fi firs ...

随机推荐

  1. 关于IOS免证书真机安装的过程和问题

    由于本人是边工作边转的IOS,所以一直都没怎么使用过免证书安装过程,通常都是公司申请的99美元的账号直接开发.但是前两天有个朋友需要在展会上用的Ipad上安装内网应用,申请一个苹果账号还要审核前后加起 ...

  2. 去掉Win7资源管理器左侧导航窗格中的收藏夹、库等的方法

    去掉Win7资源管理器的收藏夹/库/家庭组/网络的方法 将Windows 7资源管理器左侧导航窗格中的收藏夹.库.家庭组.网络全部去掉,只剩下计算机, 以收藏夹为例作简要说明. 首先打开注册表编辑器, ...

  3. 推薦使用 Microsoft Anti-Cross Site Scripting Library V3.0

    原文出至: http://blog.miniasp.com/post/2009/07/29/Recommand-Microsoft-Anti-Cross-Site-Scripting-Library- ...

  4. 阿里云安装LNMP以及更改网站文件和MySQL数据目录

    LNMP安装了哪些软件?安装目录在哪LNMP相关软件安装目录Nginx 目录: /usr/local/nginx/MySQL 目录 : /usr/local/mysql/MySQL数据库所在目录:/u ...

  5. 设置 java -jar 的进程显示名称

    有时候我们会用 nohup java -jar xxx.jar来将一些可执行的java application挂在后台,类似windows服务一样来运行.但是有一个不爽的地方,在linux终端里用jp ...

  6. parsing XML document from class path resource

    遇到问题:parsing XML document from class path resource [spring/resources] 解决方法:项目properties— source—remo ...

  7. apache配置虚拟主机

    步骤如下: 1.在配置文件httpd.conf中启用httpd-vhosts.conf 找到# Virtual hosts将Include conf/extra/httpd-vhosts.conf前的 ...

  8. NPOI导出

    <body> @using (Html.BeginForm("ImportCommentsFile", "CommentsManage", Form ...

  9. shell note

    1 输出重定向:ll > aaa 将输出内容 添加到aaa文件中 ll >> aaa将输出内容追加到aaa中 ll &>> abc 将输出内容不论正确或错误都保存 ...

  10. linux基础学习2

    http://www.chengzhier.com <a href="http://www.chengzhier.com">橙汁儿网</a> 1. date ...