B. Appleman and Tree
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white.

Consider a set consisting of k (0 ≤ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into(k + 1) parts. Note, that each part will be a tree with colored vertices.

Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7).

Input

The first line contains an integer n (2  ≤ n ≤ 105) — the number of tree vertices.

The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≤ pi ≤ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1.

The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white.

Output

Output a single integer — the number of ways to split the tree modulo 1000000007 (109 + 7).

Examples
input
3
0 0
0 1 1
output
2
input
6
0 1 1 0 4
1 1 0 0 1 0
output
1
input
10
0 1 2 1 4 4 4 0 8
0 0 0 1 0 1 1 0 0 1
output
27

题意:分成若干个连通块,每个只有一个黑色节点,求方案数

f[i][0/1]表示以i为根的子树i是否在有黑色节点的连通块中的方案数
f[u][1]=(f[u][1]*(f[v][0]+f[v][1])+f[u][0]*f[v][1])%MOD; v是0 u跟他相连,v是1 不相连;u是0时要跟v是1相连
f[u][0]=f[u][0]*(f[v][0]+f[v][1])%MOD;同理
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=1e5+,MOD=1e9+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
struct edge{
int v,ne;
}e[N<<];
int cnt=,h[N],w[N];
inline void ins(int u,int v){
cnt++;
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;
cnt++;
e[cnt].v=u;e[cnt].ne=h[v];h[v]=cnt;
}
int n;ll f[N][];
void dp(int u,int fa){
if(w[u]) f[u][]=;
else f[u][]=;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(v==fa) continue;
dp(v,u);
f[u][]=(f[u][]*(f[v][]+f[v][])+f[u][]*f[v][])%MOD;
f[u][]=f[u][]*(f[v][]+f[v][])%MOD;
}
}
int main(){
n=read();
for(int i=;i<=n-;i++) ins(read(),i);
for(int i=;i<n;i++) w[i]=read();
dp(,-);
cout<<f[][];
}

Codeforces 461B. Appleman and Tree[树形DP 方案数]的更多相关文章

  1. Codeforces 461B Appleman and Tree(木dp)

    题目链接:Codeforces 461B Appleman and Tree 题目大意:一棵树,以0节点为根节点,给定每一个节点的父亲节点,以及每一个点的颜色(0表示白色,1表示黑色),切断这棵树的k ...

  2. CF 461B Appleman and Tree 树形DP

    Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...

  3. codeforces 416B. Appleman and Tree 树形dp

    题目链接 Fill a DP table such as the following bottom-up: DP[v][0] = the number of ways that the subtree ...

  4. codeforces Round #263(div2) D. Appleman and Tree 树形dp

    题意: 给出一棵树,每个节点都被标记了黑或白色,要求把这棵树的其中k条变切换,划分成k+1棵子树,每颗子树必须有1个黑色节点,求有多少种划分方法. 题解: 树形dp dp[x][0]表示是以x为根的树 ...

  5. Codeforces Round #263 Div.1 B Appleman and Tree --树形DP【转】

    题意:给了一棵树以及每个节点的颜色,1代表黑,0代表白,求将这棵树拆成k棵树,使得每棵树恰好有一个黑色节点的方法数 解法:树形DP问题.定义: dp[u][0]表示以u为根的子树对父亲的贡献为0 dp ...

  6. Codeforces 461B - Appleman and Tree 树状DP

    一棵树上有K个黑色节点,剩余节点都为白色,将其划分成K个子树,使得每棵树上都仅仅有1个黑色节点,共同拥有多少种划分方案. 个人感觉这题比較难. 如果dp(i,0..1)代表的是以i为根节点的子树种有0 ...

  7. codeforces 161D Distance in Tree 树形dp

    题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...

  8. Codeforces 461B Appleman and Tree

    http://codeforces.com/problemset/problem/461/B 思路:dp,dp[i][0]代表这个联通块没有黑点的方案数,dp[i][1]代表有一个黑点的方案数 转移: ...

  9. Codeforces 461B Appleman and Tree:Tree dp

    题目链接:http://codeforces.com/problemset/problem/461/B 题意: 给你一棵树(编号从0到n-1,0为根节点),每个节点有黑白两种颜色,其中黑色节点有k+1 ...

随机推荐

  1. 乱码之MyEclipse控制台

    今天突然发现控制台出现乱码,查了资料解决方案不一. 我的解决方案如下: Run -> Debug Configuration... -> MyEclipse Servler -> M ...

  2. 系统安装LOL等游戏后出现VS调试报错"无法调试""拒绝访问"之类的调试错误

    一个问题抠得脑壳痛,度娘一番各种各样的答案.基本属于 1,调试权限被清0 2,文件权限问题   其中看到很多解决方案中提到"重启电脑"的说法.我也试了几次不行甚至游戏都卸载了.后来 ...

  3. jQuery 重要的知识点归纳

    jQuery 对象 jQuery 对象就是通过 jQuery 包装 DOM 对象后产生的对象. jQuery 对象是 jQuery 独有的. 只有 jQuery 对象才能使用 jQuery 的方法,在 ...

  4. Bootstrap transition.js 插件详解

    Bootstrap 自带的 JavaScript 插件的动画效果几乎都是使用 CSS 过渡实现的,而其中的 transition.js 就是为了判断当前使用的浏览器是否支持 CSS 过渡.下面先来简单 ...

  5. SQL SERVER代码生成器必备

    写代码生成器的时候经常用到的SQL 1.表添加注释 EXECUTE sp_addextendedproperty N'MS_Description', N'表注释', N'user', N'dbo', ...

  6. 自定义有监听器的ScrollView

    public class ObservableScrollView extends ScrollView { public ObservableScrollView(Context context) ...

  7. AVAudioPlayer播放并实现了后台播放和远程控制

    // ViewController.h #import <UIKit/UIKit.h> #import <AVFoundation/AVFoundation.h> @class ...

  8. HTTPS时代全面到来,你准备好了吗?

    近一年可能有很多朋友发现在使用百度搜索时,是这个样子的 如我们所见,浏览器地址栏里的HTTP可能将成为永远的过去时,取而代之的是更安全的HTTPS. 首先,HTTPS是什么? HTTPS是Http O ...

  9. 【代码笔记】iOS-点击出现选择框

    一,效果图. 二,工程图. 三,代码. RootViewController.h #import <UIKit/UIKit.h> @interface RootViewController ...

  10. iOS中block的使用、实现底层、循环引用、存储位置

    一.整体介绍 定义:C语言的匿名函数,