D. Regular Bridge
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

An undirected graph is called k-regular, if the degrees of all its vertices are equal k. An edge of a connected graph is called a bridge, if after removing it the graph is being split into two connected components.

Build a connected undirected k-regular graph containing at least one bridge, or else state that such graph doesn't exist.

Input

The single line of the input contains integer k (1 ≤ k ≤ 100) — the required degree of the vertices of the regular graph.

Output

Print "NO" (without quotes), if such graph doesn't exist.

Otherwise, print "YES" in the first line and the description of any suitable graph in the next lines.

The description of the made graph must start with numbers n and m — the number of vertices and edges respectively.

Each of the next m lines must contain two integers, a and b (1 ≤ a, b ≤ na ≠ b), that mean that there is an edge connecting the vertices aand b. A graph shouldn't contain multiple edges and edges that lead from a vertex to itself. A graph must be connected, the degrees of all vertices of the graph must be equal k. At least one edge of the graph must be a bridge. You can print the edges of the graph in any order. You can print the ends of each edge in any order.

The constructed graph must contain at most 106 vertices and 106 edges (it is guaranteed that if at least one graph that meets the requirements exists, then there also exists the graph with at most 106 vertices and at most 106 edges).

Sample test(s)
input
1
output
YES
2 1
1 2

Let's prove that there is no solution for even k.

Suppose our graph contains some bridges, k = 2s (even), all degrees are k. Then there always exists strongly connected component that is connected to other part of the graph with exactly one bridge.

Consider this component. Let's remove bridge that connects it to the remaining graph. Then it has one vertex with degree k - 1 = 2s - 1and some vertices with degrees k = 2s. But then the graph consisting of this component will contain only one vertex with odd degree, which is impossible by Handshaking Lemma.

Let's construct the answer for odd k. Let k = 2s - 1.

For k = 1 graph consisting of two nodes connected by edge works.

For k ≥ 3 let's construct graph with 2k + 4 nodes. Let it consist of two strongly connected components connected by bridge. Enumerate nodes of first component from 1 to k + 2, second component will be the same as the first one.

Let vertex 1 be connected to the second component by bridge. Also connect it with k - 1 edges to vertices 2, 3, ..., k. Connect vertices2, 3, ..., k to each other (add all possible edges between them), and then remove edges between every neighbouring pair, for example edges 2 - 3, 4 - 5, ..., (k - 1) - k.

Then we connect vertices 2, 3, ..., k with vertices k + 1 and k + 2. And finally add an edge between nodes k + 1 and k + 2.

Build the second component in the similar manner, and add a bridge between components. Constructed graph has one bridge, all degrees of k and consists of O(k) nodes and O(k2) edges.

Complexity of the solution — O(k2).

 

cf#306D. Regular Bridge(图论,构图)的更多相关文章

  1. cf550D Regular Bridge

    Regular Bridge An undirected graph is called k-regular, if the degrees of all its vertices are equal ...

  2. Codeforces Round #306 (Div. 2) D. Regular Bridge 构造

    D. Regular Bridge Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/550/pro ...

  3. Codeforces 550D —— Regular Bridge——————【构造】

     Regular Bridge time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  4. Codeforces 550 D. Regular Bridge

    \(>Codeforces \space 550 D. Regular Bridge<\) 题目大意 :给出 \(k\) ,让你构造出一张点和边都不超过 \(10^6\) 的无向图,使得每 ...

  5. D. Regular Bridge 解析(思維、圖論)

    Codeforce 550 D. Regular Bridge 解析(思維.圖論) 今天我們來看看CF550D 題目連結 題目 給你一個\(k\le100\),請構造出一個至少有一個Bridge的,每 ...

  6. 「日常训练」Regular Bridge(Codeforces Round 306 Div.2 D)

    题意与分析 图论基础+思维题. 代码 #include <bits/stdc++.h> #define MP make_pair #define PB emplace_back #defi ...

  7. hdu 4522(图论,构图)

    湫湫系列故事——过年回家 Time Limit: 500/200 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total ...

  8. codeforces #550D Regular Bridge 构造

    题目大意:给定k(1≤k≤100),要求构造一张简单无向连通图,使得存在一个桥,且每一个点的度数都为k k为偶数时无解 证明: 将这个图缩边双,能够得到一棵树 那么一定存在一个叶节点,仅仅连接一条桥边 ...

  9. cf550D. Regular Bridge(构造)

    题意 给出一个$k$,构造一个无向图,使得每个点的度数为$k$,且存在一个桥 Sol 神仙题 一篇写的非常好的博客:http://www.cnblogs.com/mangoyang/p/9302269 ...

随机推荐

  1. 用DOS命令配置服务开机自启动

    2016-08-19 15:01 Create 使用命令  sc  config 参考博客:http://blog.csdn.net/it1988888/article/details/7992626 ...

  2. 北京地铁站点遍历最少经站次数问题普遍意义上是一个NP问题,目前不存在多项式时间算法能够解决该问题

    http://www.cnblogs.com/jiel/p/5852591.html 众所周知求一个图的哈密顿回路是一个NPC问题: In the mathematical field of grap ...

  3. VRRP协议详解

    今天做了lvs的负载均衡的实验,竟然成功了,出乎我意料......哈哈哈哈 http://blog.csdn.net/fanlu319/article/details/7013258

  4. centos 搭建git服务器

    centos 6搭建git服务器 安装 rpm -ivh http://mirrors.aliyun.com/epel/epel-release-latest-6.noarch.rpm yum ins ...

  5. Arcgis 几何网络分析

    ArcGIS:网络分析(转)   由于之前对网络分析的理解有很多问题,所以在网上找了一些资料,这是其中一篇我觉得比较好的,所以就整理了一下,发到网上来,留个底吧,呵呵 注:关于几何网络的建立见前面的& ...

  6. D/A转换器实验

    1.代码: #include<reg52.h>typedef unsigned char u8;typedef unsigned int u16;void delay (u16 num){ ...

  7. 关于主机FTP连接不上,无法列出目录,列表错误,上传速度慢,掉速的解决办法

    FTP是一种文件传输协议,它支持两种模式: 一种方式叫做Standard (也就是 Active,主动方式), 一种是 Passive (也就是PASV,被动方式). Standard模式 FTP的客 ...

  8. C#验证子网掩码的正确性

    1.       IP合法关于IP地址的合法性验证很简单,方法也很多,比如字符串分解.正则表达式等. 2.       子网掩码是否合法简单来讲,子网掩码就类似这样一串数字,前面一段是连续的1, 类似 ...

  9. 20145212 实验四《Andoid开发基础》

    20145212 实验四<Andoid开发基础> 实验内容 安装Android Studio 运行安卓AVD模拟器 使用Android运行出模拟手机并显示自己的学号 实验过程 一.安装An ...

  10. Linux下的网络环境配置