题目链接: 传送门

Playlist

time limit per test:1 second     memory limit per test:256 megabytes

Description

Manao's friends often send him new songs. He never listens to them right away. Instead, he compiles them into a playlist. When he feels that his mind is open to new music, he opens the playlist and starts to listen to the songs.
Of course, there are some songs that Manao doesn't particuarly enjoy. To get more pleasure from the received songs, he invented the following procedure of listening to the playlist:

  • If after listening to some song Manao realizes that he liked it, then he remembers it and starts to listen to the next unlistened song.
  • If after listening to some song Manao realizes that he did not like it, he listens to all the songs he liked up to this point and then begins to listen to the next unlistened song.

For example, if Manao has four songs in the playlist, A, B, C, D (in the corresponding order) and he is going to like songs A and C in the end, then the order of listening is the following:

  • 1、Manao listens to A, he likes it, he remembers it.
  • 2、Manao listens to B, he does not like it, so he listens to A, again.
  • 3、Manao listens to C, he likes the song and he remembers it, too.
  • 4、Manao listens to D, but does not enjoy it and re-listens to songs A and C.
    That is, in the end Manao listens to song A three times, to song C twice and songs B and D once. Note that if Manao once liked a song, he will never dislike it on a subsequent listening.
    Manao has received n songs: the i-th of them is li seconds long and Manao may like it with a probability of pi percents. The songs could get on Manao's playlist in any order, so Manao wants to know the maximum expected value of the number of seconds after which the listening process will be over, for all possible permutations of the songs in the playlist.

Input

The first line contains a single integer n (1 ≤ n ≤ 50000). The i-th of the following n lines contains two integers, separated by a single space — li and pi (15 ≤ li ≤ 1000, 0 ≤ pi ≤ 100) — the length of the i-th song in seconds and the probability that Manao will like the song, in percents.

Output

In a single line print a single real number — the maximum expected listening time over all permutations of songs. The answer will be considered valid if the absolute or relative error does not exceed 10 - 9.

Sample Input

3
150 20
150 50
100 50

4
300 0
300 50
240 50
360 80

Sample Output

537.500000000

2121.000000000

解题思路

  • 1.Consider any two songs which are at positions i and j (i < j) in the playlist. If Manao liked song i and disliked song j, then song i will be listened to again. Therefore, with probability,code> p[i](1-p[j]),/code> the process length will increase by L[i]. The sum of,code> L[i]p[i](1-p[j]) over all pairs (plus the length of all songs since Manao listens to them at least once) is the expected length for the fixed sequence.
    So we have that if there are two songs (l1, p1) and (l2, p2), the first one should be placed earlier in the playlist if l1
    p1(1-p2)>l2p2*(1-p1) and later otherwise.
  • 2.Suppose we have fixed j and are counting the contribution of song j towards the answer if Manao dislikes it. This value is(l1p1 + l2p2 + ... + l[j-1]p[j-1]). For j+1, the corresponding value will be(l1p1+...+l[j-1]p[j-1]+l[j]p[j]). It turns out that these values differ in only a single summand, so we can compute each of them in O(1)
    一开始按照直观感觉来排序,果然交上去就wa,还是刷题太少,这些题目都是套路啊
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

struct Node{
    double val,rate;
};

bool cmp(Node x,Node y)
{
    return x.val*x.rate*(1-y.rate) > y.val*y.rate*(1-x.rate);
}

int main()
{
    int N;
    double sum = 0,tmp = 0;
    Node node[50005];
    memset(node,0,sizeof(node));
    scanf("%d",&N);
    for (int i = 0;i < N;i++)
    {
        scanf("%lf%lf",&node[i].val,&node[i].rate);
        node[i].rate /= 100;
    }
    sort(node,node+N,cmp);
    for (int i = 0;i < N;i++)
    {
        sum += node[i].val;
        sum += tmp*(1-node[i].rate);
        tmp += node[i].val*node[i].rate;
    }
    printf("%.9lf\n",sum);
}

CF 268E Playlist(贪心)的更多相关文章

  1. Codeforces Round #164 (Div. 2) E. Playlist 贪心+概率dp

    题目链接: http://codeforces.com/problemset/problem/268/E E. Playlist time limit per test 1 secondmemory ...

  2. CF 949D Curfew——贪心(思路!!!)

    题目:http://codeforces.com/contest/949/problem/D 有二分答案的思路. 如果二分了一个答案,首先可知越靠中间的应该大约越容易满足,因为方便把别的房间的人聚集过 ...

  3. CF Covered Path (贪心)

    Covered Path time limit per test 1 second memory limit per test 256 megabytes input standard input o ...

  4. CF 389 E 贪心(第一次遇到这么水的E)

    http://codeforces.com/contest/389/problem/E 这道题目刚开始想的特别麻烦...但是没想到竟然是贪心 我们只需要知道偶数的时候可以对称取的,然后奇数的时候没次取 ...

  5. CF 463A && 463B 贪心 && 463C 霍夫曼树 && 463D 树形dp && 463E 线段树

    http://codeforces.com/contest/462 A:Appleman and Easy Task 要求是否全部的字符都挨着偶数个'o' #include <cstdio> ...

  6. cf 之lis+贪心+思维+并查集

    https://codeforces.com/contest/1257/problem/E 题意:有三个集合集合里面的数字可以随意变换位置,不同集合的数字,如从第一个A集合取一个数字到B集合那操作数+ ...

  7. 【清真dp】cf1144G. Two Merged Sequences

    成就:赛后在cf使用错误的贪心通过一题 成就:在cf上赛后提交hack数据 成就:在cf上赛后hack自己 题目大意 有一长度$n \le 2\times 10^5$的序列,要求判断是否能够划分为一个 ...

  8. Codeforces Round #401 (Div. 2) 离翻身就差2分钟

    Codeforces Round #401 (Div. 2) 很happy,现场榜很happy,完全将昨晚的不悦忘了.终判我校一片惨白,小董同学怒怼D\E,离AK就差一个C了,于是我AC了C题还剩35 ...

  9. Codeforces Edu Round 62 A-E

    A. Detective Book 模拟题,有一些细节需要注意. #include <cstdio> #include <iostream> #include <cmat ...

随机推荐

  1. FineUI小技巧(2)将表单内全部字段禁用、只读、设置无效标识

    需求描述 对表单内的所有字段进行操作也是常见需求,这些操作有: 禁用:表单字段变灰,不响应用户动作. 只读:表单字段不变灰,但不接受用户输入(实际上是设置DOM节点的readonly属性),有触发器的 ...

  2. infer.net 入门2 用一个侦探故事来讲解,通俗易懂

    The results look OK, but how do you know that you aren’t missing something. Would a more sophisticat ...

  3. Web Api通过Route、RoutePrefix等特性设置路由

    [Route("customers/{customerId}/orders")] [HttpGet] public IEnumerable<Order> FindOrd ...

  4. P和NP问题

    1. 通俗详细地讲解什么是P和NP问题 http://blog.sciencenet.cn/blog-327757-531546.html   NP----非定常多项式(英语:non-determin ...

  5. 升級 Centos 6.5 的 php 版本

    升級 Centos 6.5 的 php 版本   待會再看 Centos 6.5 的 php 預設是用 5.3.3 這個版本號 最近想要改用 Laravel 4.1 發現需要 5.3.7 才能用,所以 ...

  6. Elasticsearch 权威指南

    Elasticsearch 权威指南 http://fuxiaopang.gitbooks.io/learnelasticsearch/content/index.html

  7. java设计模式(八) 适配器模式

    [适配器模式]将一个类的接口,转换成客户期望的另外一个接口.适配器让原本接口不兼容的类可以合作无间. 1,Duck接口 package com.pattern.adapter; public inte ...

  8. 【codevs 1565】【SDOI 2011】计算器 快速幂+拓展欧几里得+BSGS算法

    BSGS算法是meet in the middle思想的一种应用,参考Yveh的博客我学会了BSGS的模版和hash表模板,,, 现在才会hash是不是太弱了,,, #include<cmath ...

  9. 概率 light oj 1104

    t个数据 n天一年  至少2个人在同一天生日的概率>=0.5 问至少多少人 显然要从反面考虑 设365天 都在不同一天的概率 p(num)=1*364/365*363/365...; =(day ...

  10. Sublime Text插件:HTML+CSS+JAVASCRIPT+JSON快速格式化[转]

    今天在github上乱逛,无意间找到victorporof分享的htmlpretty插件,特做推荐: 先看看他是怎么描述htmlpretty的: This is a Sublime Text 2 an ...