基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution
PDF & CDF
The probability density function of the uniform distribution is $$f(x; \alpha, \beta) = \begin{cases}{1\over\beta-\alpha} & \mbox{if}\ \alpha < x < \beta\\ 0 & \mbox{otherwise} \end{cases} $$ The cumulative distribution function of the uniform distribution is $$F(x) = \begin{cases}0 & x\leq\alpha \\ {x-\alpha\over \beta-\alpha} & \alpha < x < \beta\\ 1 & x \geq \beta \end{cases}$$
Proof:
$$ \begin{align*} \int_{-\infty}^{\infty}f(x; \alpha, \beta)\ dx &= \int_{\alpha}^{\beta}{1\over\beta-\alpha}\ dx\\ &= {x\over\beta-\alpha}\Big|_{\alpha}^{\beta}\\ &= {\beta\over\beta-\alpha} - {\alpha\over\beta-\alpha}\\ &= 1 \end{align*} $$ And $$ \begin{align*} F(x; \alpha, \beta) &= \int_{-\infty}^{x}f(x; \alpha, \beta)\ dx\\ &= \int_{-\infty}^{x}{1\over\beta-\alpha}\ dx\\ &= {x\over\beta-\alpha}\Big|_{\alpha}^{x}\\ &= {x - \alpha\over\beta-\alpha} \end{align*} $$
Mean
The expected value is $$\mu = E[X] = {\beta + \alpha \over 2}$$
Proof:
$$ \begin{align*} E[X] &= \int_{-\infty}^{\infty}xf(x; \alpha, \beta)\ dx\\ &= \int_{\alpha}^{\beta}{x\over\beta-\alpha}\ dx\\ &= {x^2\over2(\beta - \alpha)}\Big|_{\alpha}^{\beta}\\ &= {\beta^2-\alpha^2\over2(\beta-\alpha)}\\ &= {\beta + \alpha \over 2} \end{align*} $$
Variance
The variance is $$\sigma^2 = \mbox{Var}(X) = {(\beta - \alpha)^2 \over 12}$$
Proof:
$$ \begin{align*} E\left[X^2\right] &= \int_{-\infty}^{\infty}x^2f(x;\alpha, \beta)\ dx\\ &= \int_{\alpha}^{\beta}{x^2\over\beta-\alpha}\ dx\\ &= {x^3\over 3(\beta - \alpha)}\Big|_{\alpha}^{\beta}\\ &= {\beta^3 - \alpha^3\over 3(\beta - \alpha)}\\ &= {\beta^2 + \alpha\beta + \alpha^2\over 3} \end{align*} $$ Hence $$ \begin{align*} \mbox{Var}(X) &= E\left[X^2\right] - E[X]^2\\ &= {\beta^2 + \alpha\beta + \alpha^2\over 3} - {\alpha^2+2\alpha\beta +\beta^2 \over 4}\\ &= {\beta^2 + \alpha^2 -2\alpha\beta \over 12}\\ &= {(\beta - \alpha) ^2 \over 12} \end{align*} $$
Examples
1. If $X$ is uniformly distributed over $(0, 10)$, calculate the probability that (a) $X < 3$, (b) $X > 6$, (c) $3 < X < 8$.
Solution:
The uniform density function is $f(x) = {1\over 10}$, for $x\in (0, 10)$.
(a) $$P(X < 3) = \int_{0}^{3}{1\over10}\ dx = {3\over10}$$(b) $$P(X > 6) = \int_{6}^{10}{1\over10}\ dx = {4\over10} = {2\over5}$$ (c) $$P(3 < X < 8) = \int_{3}^{8}{1\over10}\ dx = {5\over10} = {1\over2}$$
2. Buses arrives at a specified stop at 15-minute interval starting at 7 A.M. That is, they arrive at 7, 7:15, 7:30, 7:45, and so on. If a passenger arrives at the stop at a time that is uniformly distributed between 7 and 7:30, find the probability that he waits (a) less than 5 minutes for a bus; (b) more than 10 minutes for a bus.
Solution:
Let $X$ be the number of minutes past 7 that the passenger arrives at the stop. The uniform density function is $f(x) = {1\over 30}$, for $x\in (0, 30)$.
(a) The passenger would have to wait less than 5 minutes if he arrives between 7:10 and 7:15 or between 7:25 and 7:30. $$P(10 < X < 15) + P(25 < X < 30) = \int_{10}^{15}{1\over30}\ dx + \int_{25}^{30}{1\over30}\ dx = {1\over3}$$ (b) The passenger would have to wait more than 10 minutes if he arrives between 7 and 7:05 or between 7:15 and 7:20. $$P(0 < X < 5) + P(15 < X < 20) = \int_{0}^{5}{1\over30}\ dx + \int_{15}^{20}{1\over30}\ dx = {1\over3}$$
Reference
- Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 5. Pearson. ISBN: 978-0-13-603313-4.
基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution的更多相关文章
- 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution
PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...
- 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution
PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...
- 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution
PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...
- 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution
PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...
- 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution
PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...
- 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution
PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...
- 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution
PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...
- PRML Chapter 2. Probability Distributions
PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...
- Common Probability Distributions
Common Probability Distributions Probability Distribution A probability distribution describes the p ...
随机推荐
- java 实现从15位~18位的身份证号码转换,校验中国大陆公民身份证、香港居民身份证、澳门身份证和台湾身份证。
package xidian.sl.netcredit.util; /** * Copyright (C) 2009-2010 Yichuan, Fuchun All rights reserved. ...
- Java实现生产者和消费者
生产者和消费者问题是操作系统的经典问题,在实际工作中也常会用到,主要的难点在于协调生产者和消费者,因为生产者的个数和消费者的个数不确定,而生产者的生成速度与消费者的消费速度也不一样,同时还要实现生产者 ...
- 从Hadoop Summit 2016看大数据行业与Hadoop的发展
前言: 好吧我承认已经有四年多没有更新博客了.... 在这四年中发生了很多事情,换了工作,换了工作的方向.在工作的第一年的时候接触机器学习,从那之后的一年非常狂热的学习机器学习的相关技术,也写了一些自 ...
- HoloLens开发手记 - 应用程序模型 App model
HoloLens使用Universal Windows Platform (UWP)提供的应用模型.UWP应用模型定义了应用如何被安全和完全地安装.更新.版本控制和移除.它管理了应用生命周期 - 应用 ...
- Nodejs进阶:如何将图片转成datauri嵌入到网页中去
问题:将图片转成datauri 今天,在QQ群有个群友问了个问题:"nodejs读取图片,转成base64,怎么读取呢?" 想了一下,他想问的应该是 怎么样把图片嵌入到网页中去,即 ...
- Scala入门之函数进阶
/** * 函数式编程进阶: * 1,函数和变量一样作为Scala语言的一等公民,函数可以直接赋值给变量: * 2, 函数更长用的方式是匿名函数,定义的时候只需要说明输入参数的类型和函数体即可,不需要 ...
- ajax请求加载Loading或错误提示
<div id="loadingDiv" style="color:#f39800;">Loading...</div> <scr ...
- SharePoint Web Part Error – The Specified Solution Was Not Found
If you develop, release and add a SharePoint 2010 sandboxed solution web part to a page, then change ...
- 网站移植到linux上后常犯的错误
常犯的错误 1:gcc库没装或者没装全 表现:没有可用的C编译器 同类错误:提示g++ not found, 解决:出现以上错误,则是因为gcc编译器没装,或者是没装全. 挂载光盘,到Pakeges里 ...
- 网络设计中需要考虑的时延latency差异
Jeff Dean提到不同数据访问方式latency差异 Numbers Everyone Should Know L1 cache reference 0.5 ns Branch mispredic ...