基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution
PDF & CDF
The probability density function of the uniform distribution is $$f(x; \alpha, \beta) = \begin{cases}{1\over\beta-\alpha} & \mbox{if}\ \alpha < x < \beta\\ 0 & \mbox{otherwise} \end{cases} $$ The cumulative distribution function of the uniform distribution is $$F(x) = \begin{cases}0 & x\leq\alpha \\ {x-\alpha\over \beta-\alpha} & \alpha < x < \beta\\ 1 & x \geq \beta \end{cases}$$
Proof:
$$ \begin{align*} \int_{-\infty}^{\infty}f(x; \alpha, \beta)\ dx &= \int_{\alpha}^{\beta}{1\over\beta-\alpha}\ dx\\ &= {x\over\beta-\alpha}\Big|_{\alpha}^{\beta}\\ &= {\beta\over\beta-\alpha} - {\alpha\over\beta-\alpha}\\ &= 1 \end{align*} $$ And $$ \begin{align*} F(x; \alpha, \beta) &= \int_{-\infty}^{x}f(x; \alpha, \beta)\ dx\\ &= \int_{-\infty}^{x}{1\over\beta-\alpha}\ dx\\ &= {x\over\beta-\alpha}\Big|_{\alpha}^{x}\\ &= {x - \alpha\over\beta-\alpha} \end{align*} $$
Mean
The expected value is $$\mu = E[X] = {\beta + \alpha \over 2}$$
Proof:
$$ \begin{align*} E[X] &= \int_{-\infty}^{\infty}xf(x; \alpha, \beta)\ dx\\ &= \int_{\alpha}^{\beta}{x\over\beta-\alpha}\ dx\\ &= {x^2\over2(\beta - \alpha)}\Big|_{\alpha}^{\beta}\\ &= {\beta^2-\alpha^2\over2(\beta-\alpha)}\\ &= {\beta + \alpha \over 2} \end{align*} $$
Variance
The variance is $$\sigma^2 = \mbox{Var}(X) = {(\beta - \alpha)^2 \over 12}$$
Proof:
$$ \begin{align*} E\left[X^2\right] &= \int_{-\infty}^{\infty}x^2f(x;\alpha, \beta)\ dx\\ &= \int_{\alpha}^{\beta}{x^2\over\beta-\alpha}\ dx\\ &= {x^3\over 3(\beta - \alpha)}\Big|_{\alpha}^{\beta}\\ &= {\beta^3 - \alpha^3\over 3(\beta - \alpha)}\\ &= {\beta^2 + \alpha\beta + \alpha^2\over 3} \end{align*} $$ Hence $$ \begin{align*} \mbox{Var}(X) &= E\left[X^2\right] - E[X]^2\\ &= {\beta^2 + \alpha\beta + \alpha^2\over 3} - {\alpha^2+2\alpha\beta +\beta^2 \over 4}\\ &= {\beta^2 + \alpha^2 -2\alpha\beta \over 12}\\ &= {(\beta - \alpha) ^2 \over 12} \end{align*} $$
Examples
1. If $X$ is uniformly distributed over $(0, 10)$, calculate the probability that (a) $X < 3$, (b) $X > 6$, (c) $3 < X < 8$.
Solution:
The uniform density function is $f(x) = {1\over 10}$, for $x\in (0, 10)$.
(a) $$P(X < 3) = \int_{0}^{3}{1\over10}\ dx = {3\over10}$$(b) $$P(X > 6) = \int_{6}^{10}{1\over10}\ dx = {4\over10} = {2\over5}$$ (c) $$P(3 < X < 8) = \int_{3}^{8}{1\over10}\ dx = {5\over10} = {1\over2}$$
2. Buses arrives at a specified stop at 15-minute interval starting at 7 A.M. That is, they arrive at 7, 7:15, 7:30, 7:45, and so on. If a passenger arrives at the stop at a time that is uniformly distributed between 7 and 7:30, find the probability that he waits (a) less than 5 minutes for a bus; (b) more than 10 minutes for a bus.
Solution:
Let $X$ be the number of minutes past 7 that the passenger arrives at the stop. The uniform density function is $f(x) = {1\over 30}$, for $x\in (0, 30)$.
(a) The passenger would have to wait less than 5 minutes if he arrives between 7:10 and 7:15 or between 7:25 and 7:30. $$P(10 < X < 15) + P(25 < X < 30) = \int_{10}^{15}{1\over30}\ dx + \int_{25}^{30}{1\over30}\ dx = {1\over3}$$ (b) The passenger would have to wait more than 10 minutes if he arrives between 7 and 7:05 or between 7:15 and 7:20. $$P(0 < X < 5) + P(15 < X < 20) = \int_{0}^{5}{1\over30}\ dx + \int_{15}^{20}{1\over30}\ dx = {1\over3}$$
Reference
- Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 5. Pearson. ISBN: 978-0-13-603313-4.
基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution的更多相关文章
- 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution
PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...
- 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution
PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...
- 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution
PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...
- 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution
PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...
- 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution
PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...
- 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution
PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...
- 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution
PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...
- PRML Chapter 2. Probability Distributions
PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...
- Common Probability Distributions
Common Probability Distributions Probability Distribution A probability distribution describes the p ...
随机推荐
- Linux文件结构及基本文件夹
虽然Linux系统有很多种类,但是对于文件系统分区这块,基本上各个版本的Linux系统都是一样的.Linux文件系统分区不像Windows那样将硬盘分为C.D.E.F盘这样,Linux的文件结构是单个 ...
- 如何在 ie6 中使用 "localStorage"
好吧,我只是个标题党,ie6 下根本无法使用跟 h5 沾边的 localStorage.今天要向大家介绍的是 ie 特有的 userData 的存储方式,并且对它进行封装,使得不支持 localSto ...
- WPF制作的小型笔记本-仿有道云笔记
楼主所在的公司不允许下载外部资源, 不允许私自安装应用程序, 平时记录东西都是用记事本,时间久了很难找到以前记的东西. 平时在家都用有道笔记, 因此就模仿着做了一个, 先看下实际运行图片: 1. 初始 ...
- jQuery学习笔记(四):attr()与prop()的区别
这一节针对attr()与prop()之间的区别进行学习. 先看看官方文档是如何解释两者之间功能差异的: attr() Get the value of an attribute for the fir ...
- Button、ImageButton及ImageView详解
Button.ImageButton及ImageView详解 在应用程序开发过程中,很多时候需要将View的background或者src属性设置为图片,即美观又支持点击等操作.常见的有Button. ...
- python学习笔记整理——字典
python学习笔记整理 数据结构--字典 无序的 {键:值} 对集合 用于查询的方法 len(d) Return the number of items in the dictionary d. 返 ...
- 【Python】[函数式编程]高阶函数,返回函数,装饰器,偏函数
函数式编程高阶函数 就是把函数作为参数的函数,这种抽象的编程方式就是函数式编程.--- - -跳过,不是很理解,汗 - ---
- linux基础-第十一单元 系统监控
第十一单元 系统监控 系统监视和进程控制工具-top和free top命令的功能 TOP是一个动态显示过程,即可以通过用户按键来不断刷新当前状态.如果在前台执行该命令,它将独占前台,直到用户终止该程序 ...
- 使用iframe标签结合springMvc做文件上传
1.iframe.jsp <body> <h1>测试iframe文件上传</h1> <!-- 1.要求表单的target属性名称与iframe的name名字一 ...
- Android NestedScrolling嵌套滑动机制
Android NestedScrolling嵌套滑动机制 最近项目要用到官网的下拉刷新SwipeRefreshLayout,它是个容器,包裹各种控件实现下拉,不像以前自己要实现事件的拦截,都是通过对 ...