NOI2009 诗人小G
Sol
决策单调性+二分
传说中的四边形不等式...其实做了这道题还是不会...
证明简直吃屎//// 贴个传送门这里有部分分做法还有决策单调性的证明 byvoid
ISA tell me that these problem could make a list to find DanDiaoXing.
(由于...导致我可以放个表上来...)
打表程序
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; #define debug(a) cout<<#a<<"="<<a<<" "
const int N = 105;
typedef long long LL; LL T,n,l,p;
LL sum[N],f[N],g[N]; LL pow(LL x){
if(x<0) x=-x;LL res=1;
for(int i=1;i<=p;i++) res=res*x;
return res;
}
LL F(int i,int j){ return f[j]+pow(sum[i]-sum[j]+i-j-1-l); }
int main(){
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
for(cin>>T;T--;){
cin>>n>>l>>p;
for(int i=1;i<=n;i++) sum[i]=sum[i-1]+2;
memset(f,0x7f,sizeof(f));f[0]=0;
for(int i=1;i<=n;i++) for(int j=0;j<i;j++) if(f[i]>F(i,j)) g[i]=j,f[i]=F(i,j);
debug(n),debug(l),debug(p);cout<<endl<<"f[i]"<<endl;
for(int i=1;i<=n;i++) cout<<f[i]<<" ";cout<<endl;
cout<<"/////////////////////"<<endl;
cout<<endl<<"g[i]"<<endl;
for(int i=1;i<=n;i++) cout<<g[i]<<" ";
// cout<<"/////////////////////"<<endl;
cout<<endl<<"**************************************************"<<endl;
}
return 0;
}
输入文件
10
10 3 1
10 3 2
10 3 3
10 3 4
10 3 5
10 3 6
10 3 7
10 3 8
10 3 9
10 3 10
输出文件
n=10 l=3 p=1
f[i]
1 2 3 4 5 6 7 8 9 10
///////////////////// g[i]
0 0 1 2 3 4 5 6 7 8
**************************************************
n=10 l=3 p=2
f[i]
1 2 3 4 5 6 7 8 9 10
///////////////////// g[i]
0 1 2 3 4 5 6 7 8 9
**************************************************
n=10 l=3 p=3
f[i]
1 2 3 4 5 6 7 8 9 10
///////////////////// g[i]
0 1 2 3 4 5 6 7 8 9
**************************************************
n=10 l=3 p=4
f[i]
1 2 3 4 5 6 7 8 9 10
///////////////////// g[i]
0 1 2 3 4 5 6 7 8 9
**************************************************
n=10 l=3 p=5
f[i]
1 2 3 4 5 6 7 8 9 10
///////////////////// g[i]
0 1 2 3 4 5 6 7 8 9
**************************************************
n=10 l=3 p=6
f[i]
1 2 3 4 5 6 7 8 9 10
///////////////////// g[i]
0 1 2 3 4 5 6 7 8 9
**************************************************
n=10 l=3 p=7
f[i]
1 2 3 4 5 6 7 8 9 10
///////////////////// g[i]
0 1 2 3 4 5 6 7 8 9
我们可以发现每个点的最优决策点g[i]是单调递增的...
但是我一开始天真的认为点i的能作为最优决策点的起始位置也是单调递增的,显然他是一个凹或凸函数,并不具有单调性,意思就是我们需要维护一个双端队列用来作为最优决策点的转移.
每次入队都需要对于队尾元素进行出队操作,就是判断该点作为最优决策点的起始位置是否比队尾元素最优决策点的起始位置更靠左,如果是,就进行出队操作.
然后二分一下,它作为最优决策的位置.
PS:long long存不下,double也存不下,需要long double,亲测.
Code
#include<cstdio>
#include<utility>
#include<cstring>
#include<iostream>
using namespace std; #define mpr(a,b) make_pair(a,b)
const int N = 100005;
const double lim = 1e18;
typedef long long LL; int n,l,p,h,t;
LL sum[N];
int len[N],q[N],L[N],R[N];
long double f[N]; inline int in(int x=0,char ch=getchar()){ while(ch>'9'||ch<'0') ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x; }
long double MyPow(long double x){
long double a=1;if(x<0) x=-x;
for(int i=1;i<=p;i++) a=a*x;
return a;
}
long double F(int i,int j){ return f[j]+MyPow(sum[i]-sum[j]+i-j-1-l); }
int main(){
// freopen("in.in","r",stdin);
for(int T=in();T--;puts("--------------------")){
n=in(),l=in(),p=in();
char tmp[50];
for(int i=1;i<=n;i++){
scanf("%s",tmp);
len[i]=strlen(tmp);
sum[i]=sum[i-1]+len[i];
}
h=t=1,q[t]=0;L[h]=1,R[h]=n;
for(int i=1;i<=n;i++){
while(R[h]<i) h++;
f[i]=F(i,q[h]);
while(L[t]>i&&F(L[t],q[t])>F(L[t],i)) R[t-1]=R[t],t--;
int ll=L[t],rr=R[t],mm;
while(ll<=rr){
mm=(ll+rr)>>1;
if(F(mm,q[t])<=F(mm,i)) ll=mm+1;
else rr=mm-1;
}if(ll<=R[t]){ L[++t]=ll,R[t]=R[t-1],R[t-1]=ll-1,q[t]=i; }
}
if(f[n]>lim) puts("Too hard to arrange");
else printf("%lld\n",(long long)f[n]);
}
return 0;
}
NOI2009 诗人小G的更多相关文章
- bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)
目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...
- 1563: [NOI2009]诗人小G
1563: [NOI2009]诗人小G https://lydsy.com/JudgeOnline/problem.php?id=1563 分析: 直接转移f[i]=f[j]+cost(i,j),co ...
- [NOI2009]诗人小G --- DP + 决策单调性
[NOI2009]诗人小G 题目描述: 小G是一个出色的诗人,经常作诗自娱自乐. 但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并 ...
- P1912 [NOI2009]诗人小G
P1912 [NOI2009]诗人小G 思路: 平行四边形不等式优化dp 因为f(j, i) = abs(sum[i]-sum[j]+i-j-1-l)^p 满足平行四边形不等式 j < i f( ...
- LG1912 [NOI2009]诗人小G
题意 题目描述 小G是一个出色的诗人,经常作诗自娱自乐.但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以 ...
- [NOI2009] 诗人小G [题解]
诗人小G 题目大意 给出 \(n\) 个长度不超过 \(30\) 的句子,要求你对其进行排版. 对于每一行,有一个规定的行标准长度 \(L\) ,每一行的不协调度等于该行的实际长度与行标准长度差的绝对 ...
- 不失一般性和快捷性地判定决策单调(洛谷P1912 [NOI2009]诗人小G)(动态规划,决策单调性,单调队列)
洛谷题目传送门 闲话 看完洛谷larryzhong巨佬的题解,蒟蒻一脸懵逼 如果哪年NOI(放心我这样的蒟蒻是去不了的)又来个决策单调性优化DP,那蒟蒻是不是会看都看不出来直接爆\(0\)?! 还是要 ...
- 【BZOJ 1563】 [NOI2009]诗人小G
Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arr ...
- bzoj1563: [NOI2009]诗人小G
Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arr ...
随机推荐
- 关闭和启动adb服务命令
在运行中输入 关闭——adb kill-server 重启——adb start-server
- CV界的明星人物们
CV界的明星人物们 来自:http://blog.csdn.net/necrazy/article/details/9380151,另外根据自己关注的地方,加了点东西. 今天在cvchina论坛上看到 ...
- Codeforces Round #371 (Div. 2)B. Filya and Homework
题目链接:http://codeforces.com/problemset/problem/714/B 题目大意: 第一行输入一个n,第二行输入n个数,求是否能找出一个数x,使得n个数中的部分数加上x ...
- C#--中实现邮件发送
MailMessage mailmessage = new MailMessage(); mailmessage.To.Add("接受邮箱");//可以添加多个接收邮箱 mailm ...
- cmake 编译 c++ dll 的一个例子(更新1)
CMakeLists.txt project(xxx) add_library(xxx SHARED xxx.cpp) add_executable(yyy yyy.cpp) target_link_ ...
- mysql 索引及其原理
mysql 索引 KEY与INDEX的区别: KEY is something on the logical level, describes your table and database desi ...
- charles使用教程指南
文章转自:http://drops.wooyun.org/tips/2423 安装charles 下载路径:http://www.charlesproxy.com/download/ 如果是ubunt ...
- CFgym Board Queries (旋转、翻转简化)
http://codeforces.com/gym/100497 codeforces 2014-2015 CT S02E04: Codeforces Trainings Season 2 Episo ...
- 单例模式singleton
在进行开发的时候,我们在有些情形下有些对象我们只需要一个.例如:配置文件.工具类.线程池.缓存.日志对象等. 如何保证我们的对象只有一个呢?我们可以通过单例来实现. 常用的单例有两种:饿汉模式和懒汉模 ...
- JAVA浅析字节流与字符流
[概括] 字节流是通用的,既可以操作图片又可以操作文本,但一般都用于操作图片.字符流是基于字节流的,因为字符流内部融合编码表,所以用来操作文本. 1.在字节输入流中能根据文件的大小来开辟数组空间 Fi ...