[问题2014A08] 解答
[问题2014A08] 解答
由假设知 \(f(A)=\mathrm{tr}(AA')\), 因此 \[f(PAP^{-1})=\mathrm{tr}(PAP^{-1}(P')^{-1}A'P')=\mathrm{tr}((P'P)A(P'P)^{-1}A')=\mathrm{tr}(AA').\cdots(1)\] 以下设 \(P'P=(c_{ij})\), \((P'P)^{-1}=(d_{ij})\). 注意 \(P'P\) 是对称阵, 后面要用到. 令 \(A=E_{ij}\) 并代入 (1) 式, 其中 \(E_{ij}\) 是第 \((i,j)\) 元素为 1, 其余元素为 0 的基础矩阵, 则通过简单的计算可得 \[c_{ii}d_{jj}=1,\,\,\forall\,i,j.\cdots(2)\] 再令 \(A=E_{ij}+E_{kl}\) 并代入 (1) 式, 则通过简单的计算可得 \[c_{ii}d_{jj}+c_{kk}d_{ll}+c_{ki}d_{jl}+c_{ik}d_{lj}=2+2\delta_{ik}\delta_{jl},\cdots(3)\] 其中 \(\delta_{ik}\) 是 Kronecker 符号. 综合 (2) 式和 (3) 式可得 \[c_{ki}d_{jl}+c_{ik}d_{lj}=2\delta_{ik}\delta_{jl}.\cdots(4)\] 在(4) 式中令 \(j=l\), \(i\neq k\), 并注意到 \(d_{jj}\neq 0\), 故有 \(c_{ik}+c_{ki}=0\). 又因为 \(c_{ik}=c_{ki}\), 故 \[c_{ik}=0,\,\,\forall\,i\neq k.\] 于是 \(P'P\) 是一个对角阵, 从而 \(d_{jj}=c_{jj}^{-1}\), 带入 (1) 式可得 \[c_{ii}=c_{jj},\,\,\forall\,i,j.\] 因此 \(P'P=cI_n\) 是一个纯量阵. \(\Box\)
[问题2014A08] 解答的更多相关文章
- 精选30道Java笔试题解答
转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...
- 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团
精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...
- 【字符编码】Java字符编码详细解答及问题探讨
一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...
- spring-stutrs求解答
这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...
- JavaScript Bind()趣味解答 包懂~~
首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...
- CMMI4级实践中的5个经典问题及解答
这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是: A.流程,子流程部分不明白 ...
- 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final
1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...
- 知乎大牛的关于JS解答
很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...
- [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)
[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1) 当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...
随机推荐
- Web前端开发基础 第四课(CSS一些性质)
继承 CSS的某些样式是具有继承性的,那么什么是继承呢?继承是一种规则,它允许样式不仅应用于某个特定html标签元素,而且应用于其后代.比如下面代码:如某种颜色应用于p标签,这个颜色设置不仅应用p标签 ...
- SQL Server 存储过程(转)
Transact-SQL中的存储过程,非常类似于Java语言中的方法,它可以重复调用.当存储过程执行一次后,可以将语句缓存中,这样下次执行的时候直接使用缓存中的语句.这样就可以提高存储过程的性能. Ø ...
- 奥迪--S5
--型号:S5 --生产:奥迪进口 --价格:60-80W --发动机:3T 333马力 V6,机械增压 --变速箱:7档双离合 --气缸排列:V --总部:德国,英戈尔施塔特 --类型:中型车 -- ...
- js滚动加载插件
function $xhyload(o){ var that=this; if(!o){ return; }else{ that.win=$(o.config.obj); that.qpanel=$( ...
- ASP.NET 访问路径 错误提示 HTTP 错误 404.8 原来路径中包含bin目录被拒绝
HTTP 错误 404.8 - Not Found HTTP 错误 404.8 - Not Found 请求筛选模块被配置为拒绝包含 hiddenSegment 节的 URL 中的路径. 最可能的原因 ...
- App_global.asax.pdb: 另一个程序正在使用此文件,进程无法访问。
页面修改后,浏览报错,信息如下. 编译错误 说明: 在编译向该请求提供服务所需资源的过程中出现错误.请检查下列特定错误详细信息并适当地修改源代码. 编译器错误消息: CS0042: 创建调试信息文件“ ...
- Nhiberate (二) 搭项目
使用: visual studio 2015 ;SQL SERVER 2012. 参考.测试可用 其中有点不太一样的地儿, ISession 的泛型方法: 用了 QueryOver<>,转 ...
- tomcat access log 参数
%a - 客户端IP地址 %A - 本机IP地址 %b - 发送字节数,不含HTTP头 如果为空是 '-' %B - 同上 %h - 客户端机器名 (如果connector的enableLookup ...
- Apache和IIS服务器共存问题--来自网上内容
1.apache 主要支持PHP IIS 主要支持asp 静态的网页他们都支持入htm,端口冲突的话你可以更改其中一个服务器的端口来实现端口的避让,IIS在右击“我的电脑”“管理”“服务和应用程 ...
- jquery入门学习笔记
还是先来个例子: <div id="div1" class="box">div</div> <ul> <li>& ...