[问题2014A08] 解答

由假设知 \(f(A)=\mathrm{tr}(AA')\), 因此 \[f(PAP^{-1})=\mathrm{tr}(PAP^{-1}(P')^{-1}A'P')=\mathrm{tr}((P'P)A(P'P)^{-1}A')=\mathrm{tr}(AA').\cdots(1)\] 以下设 \(P'P=(c_{ij})\), \((P'P)^{-1}=(d_{ij})\). 注意 \(P'P\) 是对称阵, 后面要用到. 令 \(A=E_{ij}\) 并代入 (1) 式, 其中 \(E_{ij}\) 是第 \((i,j)\) 元素为 1, 其余元素为 0 的基础矩阵, 则通过简单的计算可得 \[c_{ii}d_{jj}=1,\,\,\forall\,i,j.\cdots(2)\] 再令 \(A=E_{ij}+E_{kl}\) 并代入 (1) 式, 则通过简单的计算可得 \[c_{ii}d_{jj}+c_{kk}d_{ll}+c_{ki}d_{jl}+c_{ik}d_{lj}=2+2\delta_{ik}\delta_{jl},\cdots(3)\] 其中 \(\delta_{ik}\) 是 Kronecker 符号. 综合 (2) 式和 (3) 式可得 \[c_{ki}d_{jl}+c_{ik}d_{lj}=2\delta_{ik}\delta_{jl}.\cdots(4)\] 在(4) 式中令 \(j=l\), \(i\neq k\), 并注意到 \(d_{jj}\neq 0\), 故有 \(c_{ik}+c_{ki}=0\). 又因为 \(c_{ik}=c_{ki}\), 故 \[c_{ik}=0,\,\,\forall\,i\neq k.\] 于是 \(P'P\) 是一个对角阵, 从而 \(d_{jj}=c_{jj}^{-1}\), 带入 (1) 式可得 \[c_{ii}=c_{jj},\,\,\forall\,i,j.\] 因此 \(P'P=cI_n\) 是一个纯量阵.  \(\Box\)

[问题2014A08] 解答的更多相关文章

  1. 精选30道Java笔试题解答

    转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...

  2. 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团

    精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...

  3. 【字符编码】Java字符编码详细解答及问题探讨

    一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...

  4. spring-stutrs求解答

    这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...

  5. JavaScript Bind()趣味解答 包懂~~

    首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...

  6. CMMI4级实践中的5个经典问题及解答

    这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是:   A.流程,子流程部分不明白 ...

  7. 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final

    1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...

  8. 知乎大牛的关于JS解答

    很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...

  9. [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)

    [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1)  当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...

随机推荐

  1. poj2115-C Looooops(扩展欧几里德算法)

    本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...

  2. java.lang.UnsupportedClassVersionError: Bad version number in .class file异常

    java.lang.UnsupportedClassVersionError: Bad version number in .class file异常 部署工程时也出现过因为版本不同引起的问题,那时我 ...

  3. Thinking in Java——笔记(7)

    Reusing Classes The first is composition,You're simply reusing the functionality of the code, not it ...

  4. linq查询结果datetime类型转string类型

    var list = new SupplierLogic().GetSupplier(pageSize, pageIndex).Select(q => new { SupplierID = q. ...

  5. 在VS2013中查看C/C++预处理后的文件

    1.右键工程(例子中是myproject),选择[属性],在弹出的对话框中,选择[配置属性]-->[C/C++]-->[预处理器],将[预处理到文件]该为[是],应用,确认. 2.在VS ...

  6. angularJs实现信息数据提交功能

    如下简单的报名提交的实现 1.数据绑定 2.$http.post()提交数据 一.数据绑定 <!--报名部分--> <div class="attend_box" ...

  7. AD6电气规则错误报告中英文对照

    Ⅰ:Error Reporting 错误报告 A:Violations Associated with Buses 有关总线电气错误的各类型(共 12 项) ◆ bus indices out of  ...

  8. oracle从零开始学习笔记 二

    多表查询 等值连接(Equijoin) select ename,empno,sal,emp.deptno from emp,dept where dept.deptno=emp.deptno; 非等 ...

  9. mesos+marathon+zookeeper的docker管理集群亲手搭建实例(环境Centos6.8)

    资源:3台centos6.8虚拟机 4cpu 8G内存 ip 10.19.54.111-113 1台centos6.8虚拟机2cpu 8G ip 10.19.53.55 1.System Requir ...

  10. Eclipse新增Web项目

    [前置条件] 1. 电脑已安装JDK1.6,并成功配置环境变量 2. 电脑已存在tomcat6.0包,无需安装 [操作步骤] 1. 为eclipse配置tomcat6.0 (1)eclipse菜单栏, ...