原文地址:http://techlog.cn/article/list/10182917

概述

logstash 之所以强大和流行,与其丰富的过滤器插件是分不开的

过滤器提供的并不单单是过滤的功能,还可以对进入过滤器的原始数据进行复杂的逻辑处理,甚至添加独特的新事件到后续流程中

强大的文本解析工具 -- Grok

grok 是一个十分强大的 logstash filter 插件,他可以解析任何格式的文本,他是目前 logstash 中解析非结构化日志数据最好的方式

基本用法

Grok 的语法规则是:

%{语法 : 语义}

“语法”指的就是匹配的模式,例如使用 NUMBER 模式可以匹配出数字,IP 则会匹配出 127.0.0.1 这样的 IP 地址:

%{NUMBER:lasttime}%{IP:client}

默认情况下,所有“语义”都被保存成字符串,你也可以添加转换到的数据类型

%{NUMBER:lasttime:int}%{IP:client}

目前转换类型只支持 int 和 float

覆盖 -- overwrite

使用 Grok 的 overwrite 参数也可以覆盖日志中的信息

filter {
grok {
match => { "message" => "%{SYSLOGBASE} %{DATA:message}" }
overwrite => [ "message" ]
}
}

日志中的 message 字段将会被覆盖

示例

对于下面的log,事实上是一个 HTTP 请求行:

55.3.244.1 GET /index.html  0.043

我们可以使用下面的 logstash 配置:

input {
file {
path => "/var/log/http.log"
}
}
filter {
grok {
match => { "message" => "%{IP:client} %{WORD:method} %{URIPATHPARAM:request} %{NUMBER:bytes} %{NUMBER:duration}" }
}
}

可以看到收集结果:

client: 55.3.244.1
method: GET
request: /index.html
bytes:
duration: 0.043

将无结构的数据通过这样的方式实现了结构化输出

Grok 使用正则表达式

grok 是在正则表达式的基础上实现的(使用 Oniguruma 库),因此他可以解析任何正则表达式

创建模式

提取日志字段和正则表达式提取字段的规则一样:

(?<field_name>the pattern here)

首先,创建一个模式文件,写入你需要的正则表达式:

# contents of ./patterns/postfix:
POSTFIX_QUEUEID [-9A-F]{,}

然后配置你的 Logstash:

filter {
grok {
patterns_dir => "./patterns"
match => { "message" => "%{SYSLOGBASE} %{POSTFIX_QUEUEID:queue_id}: %{GREEDYDATA:syslog_message}" }
}
}

针对日志:

Jan  1 06:25:43 mailserver14 postfix/cleanup[21403]: BEF25A72965: message-id=<20130101142543.5828399CCAF@mailserver14.example.com>

可以匹配出:

timestamp: Jan 1 06:25:43

logsource: mailserver14

program: postfix/cleanup

pid: 21403

queue_id: BEF25A72965

syslog_message: message-id=<20130101142543.5828399CCAF@mailserver14.example.com>

IP 位置插件 -- Geoip

Logstash 1.3.0 以上可以使用 geoip 插件获取 IP 对应的地理位置,对于 accesslog 等的统计来说,IP 来源是非常有用的一个信息

使用方法

geoip {
source => ...
}

示例

filter {
geoip {
source => "message"
}
}

运行结果:

{
"message" => "183.60.92.253",
"@version" => "",
"@timestamp" => "2014-08-07T10:32:55.610Z",
"host" => "raochenlindeMacBook-Air.local",
"geoip" => {
"ip" => "183.60.92.253",
"country_code2" => "CN",
"country_code3" => "CHN",
"country_name" => "China",
"continent_code" => "AS",
"region_name" => "",
"city_name" => "Guangzhou",
"latitude" => 23.11670000000001,
"longitude" => 113.25,
"timezone" => "Asia/Chongqing",
"real_region_name" => "Guangdong",
"location" => [
[] 113.25,
[] 23.11670000000001
]
}
}

可以看到,logstash 通过提取到的 message 字段中的 IP,解析到了地理位置相关的一系列信息

当然,对于解析出的众多数据,你也可以通过 fields 选项进行筛选

filter {
geoip {
fields => ["city_name", "continent_code", "country_code2", "country_code3", "country_name", "dma_code", "ip", "latitude", "longitude", "postal_code", "region_name", "timezone"]
}
}

选项

上面我们看到了 source 和 fields 两个选项,geoip 还提供了下列选项:

geoip 提供的可选选项
选项 类型 是否必须 默认值 意义
add_field hash {} 为当前事件增加一个字段
add_tag array [] 为当前事件增加一个用于标识的tag
database path 位置信息库所在文件
fields array 在 geoip 的返回结果中筛选部分字段
lru_cashe_size int 1000 geoip 占用的缓存大小
periodic_flush bool false 是否定期调用刷新方e
remove_field array [] 从结果集中删除字段
remove_tag array [] 从结果集中删除tag
source string 需要解析的存有 IP 的字段名称
target string "geoip" 返回的结果中保存 geoip 解析结果的字段名

json

对于 json 格式的 log,可以通过 codec 的 json 编码进行解析,但是如果记录中只有一部分是 json,这时候就需要在 filter 中使用 json 解码插件

示例

filter {
json {
source => "message"
target => "jsoncontent"
}
}

运行结果:

{
"@version": "",
"@timestamp": "2014-11-18T08:11:33.000Z",
"host": "web121.mweibo.tc.sinanode.com",
"message": "{\"uid\":3081609001,\"type\":\"signal\"}",
"jsoncontent": {
"uid": ,
"type": "signal"
}
}

上面的例子中,解析结果被放到了 target 所指向的节点下,如果希望将解析结果与 log 中其他字段保持在同一层级输出,那么只需要去掉 target 即可:

{
"@version": "",
"@timestamp": "2014-11-18T08:11:33.000Z",
"host": "web121.mweibo.tc.sinanode.com",
"message": "{\"uid\":3081609001,\"type\":\"signal\"}",
"uid": ,
"type": "signal"
}

时间分割 -- split

mutiline 让 logstash 将多行数据变成一个事件,当然了,logstash 同样支持将一行数据变成多个事件

logstash 提供了 split 插件,用来把一行数据拆分成多个事件

示例:

filter {
split {
field => "message"
terminator => "#"
}
}

运行结果:

对于 "test1#test2",上述 logstash 配置将其变成了下面两个事件:

{
"@version": "",
"@timestamp": "2014-11-18T08:11:33.000Z",
"host": "web121.mweibo.tc.sinanode.com",
"message": "test1"
}
{
"@version": "",
"@timestamp": "2014-11-18T08:11:33.000Z",
"host": "web121.mweibo.tc.sinanode.com",
"message": "test2"
}

需要注意的是,当 split 插件执行结束后,会直接进入 output 阶段,其后的所有 filter 都将不会被执行

数据修改 -- mutate

logstash 还支持在 filter 中对事件中的数据进行修改

重命名 -- rename

对于已经存在的字段,重命名其字段名称

filter {
mutate {
rename => ["syslog_host", "host"]
}
}

更新字段内容 -- update

更新字段内容,如果字段不存在,不会新建

filter {
mutate {
update => { "sample" => "My new message" }
}
}

替换字段内容 -- replace

与 update 功能相同,区别在于如果字段不存在则会新建字段

filter {
mutate {
replace => { "message" => "%{source_host}: My new message" }
}
}

数据类型转换 -- convert

filter {
mutate {
convert => ["request_time", "float"]
}
}

文本替换 -- gsub

gsub 提供了通过正则表达式实现文本替换的功能

filter {
mutate {
gsub => [
# replace all forward slashes with underscore
"fieldname", "/", "_",
# replace backslashes, question marks, hashes, and minuses
# with a dot "."
"fieldname2", "[\\?#-]", "."
]
}
}

大小写转换 -- uppercase、lowercase

filter {
mutate {
uppercase => [ "fieldname" ]
}
}

去除空白字符 -- strip

类似 php 中的 trim,只去除首尾的空白字符

filter {
mutate {
strip => ["field1", "field2"]
}
}

删除字段 -- remove、remove_field

remove 不推荐使用,推荐使用 remove_field

filter {
mutate {
remove_field => [ "foo_%{somefield}" ]
}
}

删除字段 -- remove、remove_field

remove 不推荐使用,推荐使用 remove_field

filter {
mutate {
remove_field => [ "foo_%{somefield}" ]
}
}

分割字段 -- split

将提取到的某个字段按照某个字符分割

filter {
mutate {
split => ["message", "|"]
}
}

针对字符串 "123|321|adfd|dfjld*=123",可以看到输出结果:

{
"message" => [
[] "",
[] "",
[] "adfd",
[] "dfjld*=123"
],
"@version" => "",
"@timestamp" => "2014-08-20T15:58:23.120Z",
"host" => "raochenlindeMacBook-Air.local"
}

聚合数组 -- join

将类型为 array 的字段中的 array 元素使用指定字符为分隔符聚合成一个字符串

如我们可以将 split 分割的结果再重新聚合起来:

filter {
mutate {
split => ["message", "|"]
}
mutate {
join => ["message", ","]
}
}

输出:

{
"message" => "123,321,adfd,dfjld*=123",
"@version" => "",
"@timestamp" => "2014-08-20T16:01:33.972Z",
"host" => "raochenlindeMacBook-Air.local"
}

合并数组 -- merge

对于几个类型为 array 或 hash 或 string 的字段,我们可以使用 merge 合并

filter {
mutate {
merge => [ "dest_field", "added_field" ]
}
}

需要注意的是,array 和 hash 两个字段是不能 merge 的

Logstash filter 的使用的更多相关文章

  1. logstash filter 处理json

    根据输入的json字段,分别建立索引.循环生成注册log和登录log保存到testlog文件中,结果如下: {"method":"register"," ...

  2. LogStash filter介绍(九)

    LogStash plugins-filters-grok介绍 官方文档:https://www.elastic.co/guide/en/logstash/current/plugins-filter ...

  3. logstash filter grok 用法

    在elk+filebeat都安装好,且明白了基本流程后,主要的就是写logstash的filter了,以此来解析特定格式的日志 logstash的filter是用插件实现的,grok是其中一个,用来解 ...

  4. Logstash filter 插件之 grok

    本文简单介绍一下 Logstash 的过滤插件 grok. Grok 的主要功能 Grok 是 Logstash 最重要的插件.它可以解析任意文本并把它结构化.因此 Grok 是将非结构化的日志数据解 ...

  5. logstash filter geoip 转换IP为详细地址等内容。

    使用logstash geoip筛选器可以将ip地址解析为更丰富的内容. 结果类似于这样: "geoip": { "city_name": "Ürüm ...

  6. 使用Logstash filter grok过滤日志文件

    Logstash提供了一系列filter过滤plugin来处理收集到的log event,根据log event的特征去切分所需要的字段,方便kibana做visualize和dashboard的da ...

  7. logstash filter plugin

    1. 基本语法%{NUMBER:duration} %{IP:client} 2. 支持的数据类型默认会把所有的匹配都当作字符串,比如0.043, 想要转成浮点数,可以%{NUMBER:num:flo ...

  8. Elasticsearch logstash filter

    参照官方文档: https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html demo-pipeline.conf i ...

  9. Logstash filter 插件之 date

    使用 date 插件解析字段中的日期,然后使用该日期或时间戳作为事件的 logstash 时间戳.对于排序事件和导入旧数据,日期过滤器尤其重要.如果您在事件中没有得到正确的日期,那么稍后搜索它们可能会 ...

随机推荐

  1. TURN Server Windows 安装程序

    有了OfficeSIP TURN Server 安装包,记录一下. http://www.onlinedown.net/soft/94746.htm 开源代码(C#)和应用地址:https://sou ...

  2. Linux中对逻辑卷的建立

    大体上与主分区的建立相同,只有一些不同. 建议大家先看下我的“Linux中安装硬盘后对硬盘的分区以及挂载”  https://www.cnblogs.com/feiquan/p/9219447.htm ...

  3. c/c++ 标准库 智能指针( smart pointer ) 是啥玩意儿

    标准库 智能指针( smart pointer ) 是啥玩意儿 一,为什么有智能指针??? c++程序员需要自己善后自己动态开辟的内存,一旦忘了释放,内存就泄露. 智能指针可以帮助程序员"自 ...

  4. Cs231n课堂内容记录-Lecture2-Part1 图像分类

    Lecture 2 课程内容记录:(上)https://zhuanlan.zhihu.com/p/20894041?refer=intelligentunit (下)https://zhuanlan. ...

  5. wamp 中安装cakephp Fatal error: You must enable the intl extension to use CakePHP. in XXX

    今天在wamp下安装cakephp3.x的时候,报出这么一条错误:Fatal error: You must enable the intl extension to use CakePHP. in ...

  6. PHP is much better than you think

    Rants about PHP are everywhere, and they even come from smart guys.When Jeff Atwood wrote yet anothe ...

  7. KFCM算法的matlab程序

    KFCM算法的matlab程序 在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行简单的实现,并求其准确度. 作者:凯鲁嘎吉 - 博客园 http:// ...

  8. 推荐几本FPGA书籍(更新中)

    1.<数字信号处理的FPGA实现>第三版 讲解比较详细的DSP理论,使用FPGA实现,不过使用VHDL语言:也颇具参考性. 2. <Xilinx Zynq-7000 嵌入式系统设计与 ...

  9. 关于LVS负载均衡tcp长连接分发的解决思路

    虽然应用keepalived搞定了后端服务负载均衡和高可用性问题,但是在具体应用的时候,还是要注意很多问题.很多应用都用tcp或者http的长连接,因为建立tcp连接或者http连接开销比较大,而应用 ...

  10. 面试----你可以手写一个promise吗

    参考:https://www.jianshu.com/p/473cd754311f <!DOCTYPE html> <html> <head> <meta c ...