题解-bzoj2560 串珠子
刚被教练数落了一通,心情不好,来写篇题解
Problem
题目简述:给定\(n\)个点的,每两个点\(i,j\)之间有\(c_{i,j}\)条直接相连的路(其中只能选一条或不选),问共有多少种方案可以使得整张图连通。\(n\leq 16\)
Solution
算是遇到的没那么套路的容斥题了 虽然还是有点套路
发现\(n\leq 16\)各种暗示我们要状压,于是按照以往状压的题的套路,设\(f(S)\)表示当\(S\)集合中的点连通方案数
发现不是很好直接计算,但总方案数又很好得出,于是考虑容斥,设\(g(S)\)表示集合\(S\)中的点之间随意相连的方案数
根据定义可得
\]
想法用\(g\)去消掉\(f\)不满足题意的方案数,联想到城市规划中的做法:限定\(1\)号节点的连通集合大小
类似的,这里可以限定\(S\)中编号最小的点连通大小(当然编号最大的点也行)
枚举\(S\)中编号最小的点连通块大小,可以得到(设\(H\)为集合\(S\)中去除最小元素的集合):
\(f(S)=g(S)-\sum_{T\subseteq H}g(T)f(S-T)\)
题目之间类比关系好多啊,比如上一篇就是二项堆和AC自动机的类比
Code
#include <cstdio>
const int N=18,M=1<<N,p=1e9+7;
int g[M],f[M],bin[N];
int a[N][N],n;
inline int qm(int x){return x<p?x:x-p;}
int main(){
scanf("%d",&n);
for(int i=0;i<n;++i)
for(int j=0;j<n;++j)
scanf("%d",&a[i][j]);
bin[0]=1;
for(int i=1;i<=n;++i)bin[i]=bin[i-1]<<1;
for(int S=0,s;S<bin[n];++S){
f[S]=1;
for(int i=0;i<n;++i)if(bin[i]&S)
for(int j=i+1;j<n;++j)if(bin[j]&S)
f[S]=1ll*f[S]*(a[i][j]+1)%p;
g[S]=f[S],s=(S-1)&S;
for(int i=s;i;i=(i-1)&s)
f[S]=qm((int)f[S]-1ll*g[i]*f[S^i]%p+p);
}
printf("%d\n",f[bin[n]-1]);
return 0;
}
题解-bzoj2560 串珠子的更多相关文章
- bzoj2560串珠子 状压dp+容斥(?)
2560: 串珠子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 515 Solved: 348[Submit][Status][Discuss] ...
- 【题解】Bzoj2560串珠子
挺强的……容斥+状压DP.首先想到如果可以求出f[k],f[k]代表联通状态为k的情况下的合法方案数,则f[k] = g[k] - 非法方案数.g[k]为总的方案数,这是容易求得的.那么非法方案数我们 ...
- bzoj2560 串珠子
Description 铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不 ...
- bzoj2560串珠子(子集dp)
铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在ci, ...
- [BZOJ2560]串珠子:状压DP+容斥原理
分析 为什么我去年6月做过这道题啊,估计当时抄的题解. 具体做法就是令\(f[S]\)表示保证连通点集\(S\)的方案数,\(g[S]\)表示不保证连通点集\(S\)的方案数. 容易想到: \[g[S ...
- bzoj2560 串珠子 状压DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2560 题解 大概是这类关于无向图的联通性计数的套路了. 一开始我想的是这样的,考虑容斥,那么就 ...
- BZOJ2560串珠子
/* 很清新的一道题(相比上一道题) g[S]表示该 S集合中胡乱连的所有方案数, f[S] 表示S集合的答案 那么F[S] 等于G[S]减去不合法的部分方案 不合法的方案就枚举合法的部分就好了 g[ ...
- 2019.02.09 bzoj2560: 串珠子(状压dp+简单容斥)
传送门 题意简述:nnn个点的带边权无向图,定义一个图的权值是所有边的积,问所有nnn个点都连通的子图的权值之和. 思路: fif_ifi表示保证集合iii中所有点都连通其余点随意的方案数. gig ...
- bzoj2560串珠子——子集DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2560 转载: 很明显的状压dp 一开始写的dp可能会出现重复统计的情况 而且难以去重 假设 ...
随机推荐
- UDP协议
本文分析基于Linux Kernel 1.2.13 原创作品,转载请标明出处http://blog.csdn.net/yming0221/article/details/7532512 更多请看专栏, ...
- IT术语
目录: 心跳检测 故障切换 主从配置 负载均衡 集群LVS 多集群横向扩容 纵向扩容 CDN DOS DDOS 会话跟踪 CSRF
- webService-cxf框架的使用
webService-cxf框架的使用: 1:简介: wbservice常用框架 Axis: --> Axis2 XFire: -->(Web Service框架) XFire是codeH ...
- Vertica系列: 表的分段和分区
Vertica 有两个数据分布的概念, segmentation 和 partition, 至少有下面几个区别: 1.目的方面:segmentation 解决各节点数据倾斜问题, 适用于木桶原理, 数 ...
- transitionEnd不起作用解决方法
var show = function(html, className) { className = className || ""; var mask = $("< ...
- luogu 3045 优先队列反悔/bzoj 2590
N头奶牛,价格Pi,K张优惠券,优惠券购买降为Ci,不超过M的钱最多可买多少奶牛 先将c值k小的加入,将它们省下的钱加入优先队列(省下的钱由少到多),在将k+1-n用p排序,再逐个与优先队列中弹出的比 ...
- Python之进程 1 - 基本概念
一 背景知识 顾名思义,进程即正在执行的一个过程.进程是对正在运行程序的一个抽象. 进程的概念起源于操作系统,是操作系统最核心的概念,也是操作系统提供的最古老也是最重要的抽象概念之一.操作系统的其他所 ...
- GDI+学习---2.GDI+编程模式及组成类
在使用GDI+的时候,您不必像在GDI中那样关心设备场景句柄,只需简单地创建一个Graphics对象,然后以您熟悉的面向对象的方式(如myGraphicsObject.DrawLine(paramet ...
- Python 爬虫一 简介
什么是爬虫? 爬虫可以做什么? 爬虫的本质 爬虫的基本流程 什么是request&response 爬取到数据该怎么办 什么是爬虫? 网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间 ...
- 通过HTTP服务访问FTP服务器文件(配置nginx+ftp服务器)
1.前提 已安装配置好nginx+ftp服务 2.配置Nginx 服务器 2.1进入nginx 配置文件目录: cd /usr/local/nginx/conf vi nginx.conf 2.2 ...