题目链接:http://www.51nod.com/onlineJudge/submitDetail.html#!judgeId=620811

参考自:https://blog.csdn.net/f_zyj/article/details/51990962

基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
收藏
关注
数组A和数组B,里面都有n个整数。

数组C共有n^2个整数,分别是:

A[0] * B[0],A[0] * B[1] ...... A[0] * B[n-1]
A[1] * B[0],A[1] * B[1] ...... A[1] * B[n-1] 
...... 
A[n - 1] * B[0],A[n - 1] * B[1]  ......  A[n - 1] * B[n - 1]
是数组A同数组B的组合,求数组C中第K大的数。
 
例如:
A:1 2 3,B:2 3 4。
A与B组合成的C为
         A[0]  A[1]  A[2]
B[0]     2      3      4
B[1]     4      6      8
B[2]     6      9     12
共9个数。
Input
第1行:2个数N和K,中间用空格分隔。N为数组的长度,K对应第K大的数。(2 <= N <= 50000,1 <= K <= 10^9)
第2 - N + 1行:每行2个数,分别是A[i]和B[i]。(1 <= A[i],B[i] <= 10^9)
Output
输出第K大的数。
Input示例
3 2
1 2
2 3
3 4
Output示例
9

解题思路:总共有n*n个数,要查找第K大数,即查找第n*n+k-1小数,先对两个数组进行排序,对该区间范围进行二分,然后判断比该数小的数数目是比n*n+k-1多还是少。
附上代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll maxn=5e4+;
ll n,k,A[maxn],B[maxn]; ll check(ll x)
{
ll j=n,cnt=;
for(int i=;i<=n;i++)
{
while(j>)
{
if(A[i]*B[j]>x)
j--;
else
break;
}
cnt+=j;
}
return cnt;
} int main()
{
scanf("%lld%lld",&n,&k);
for(int i=;i<=n;i++)
scanf("%lld%lld",&A[i],&B[i]);
sort(A+,A+n+);
sort(B+,B++n);
ll low=A[]*B[];
k=n*n-k+;
ll high=A[n]*B[n];
while(low<=high)
{
ll mid=(low+high)>>;
if(check(mid)>=k)
high=mid-;
else
low=mid+;
}
printf("%lld\n",low);
}

51nod 1105(第K大数 二分套二分)的更多相关文章

  1. POJ-3579 Median---二分第k大(二分套二分)

    题目链接: https://cn.vjudge.net/problem/POJ-3579 题目大意: 求的是一列数所有相互之间差值的序列的最中间的值是多少. 解题思路: 可以用二分套二分的方法求解第m ...

  2. poj3579 二分套二分

    和poj3685类似,都是二分答案然后在判断时再二分 这题的内层二分可以用stl代替 /* 二分套二分,思路:升序排序数据,先二分答案x进行判断,判断时枚举每个元素,二分找到和其之差小于等于x的所有值 ...

  3. poj 3579 Median 二分套二分 或 二分加尺取

    Median Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5118   Accepted: 1641 Descriptio ...

  4. poj 3685 Matrix 二分套二分 经典题型

    Matrix Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 5724   Accepted: 1606 Descriptio ...

  5. 51nod 1105 第K大的数 【双重二分/二分套二分/两数组任意乘积后第K大数】

    1105 第K大的数  基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 数组A和数组B,里面都有n个整数.数组C共有n^2个整数,分别是A[0] * ...

  6. 【BZOJ-3110】K大数查询 整体二分 + 线段树

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6265  Solved: 2060[Submit][Sta ...

  7. BZOJ 3110 K大数查询 | 整体二分

    BZOJ 3110 K大数查询 题面 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个 ...

  8. 1105 第K大的数(二分)

    1105 第K大的数 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 数组A和数组B,里面都有n个整数.数组C共有n^2个整数,分别是A[0] * B[0],A[0 ...

  9. [ZJJOI2013]K大数查询 整体二分

    [ZJJOI2013]K大数查询 链接 luogu 思路 整体二分. 代码 #include <bits/stdc++.h> #define ll long long using name ...

随机推荐

  1. Velocity ${} 和$!{}、!${}区别

    前言 在使用Velocity时经常会看到三种使用变量的情况 情况一:${name} 情况二:$!{name} 情况三:!${name} 那么三者之间到底有什么区别呢?莫慌!!!哈哈 情况一:${nam ...

  2. 1228.Poor Pigs 可怜的猪

    转自[LeetCode] Poor Pigs 可怜的猪 There are 1000 buckets, one and only one of them contains poison, the re ...

  3. 在eclipse中spring的xml配置文件标签中class路径全限定名自动提示设置

    这个自动提示其实很简单,没有网上说的那些要在help下的Install中输入网址来下载更新一堆东西那么复杂. 只需要打开Help — — >Eclipse Marketplace... 然后在该 ...

  4. mysql数据库的备份和还原的总结

    mysql数据库的备份和还原的总结 (来自一运维同事的总结) 1. 备份方式: 热备:数据库在线进行备份,不影响读和写的在线备份方式! 温备:数据库在线进行备份,对表备份时先锁定写操作,仅可以执行读操 ...

  5. shit vue & shit iview

    shit vue & shit iview <Switch> !== <i-switch> https://www.iviewui.com/components/swi ...

  6. Lodop“对象不支持SET__LICENSES属性或方法”SET__LICENSES is not a function”

    Lodop中的方法如果书写错误,就会报错:“对象不支持XXX属性或方法”调试JS会报错”SET__LICENSES is not a function” LODOP.SET_LICENSES是加注册语 ...

  7. Linux 下 解压zip文件出现乱码

    网上下载了一个文件,鼠标右键提取出来发现中文文件名全部乱码: 打开命令行  unzip -h  可以看到 -O 参数  制定编码解压: 比如: unzip -O CP936 xxx.zip

  8. hibernate多对多映射文件的配置

    user.hbm.xml <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE hibernate ...

  9. bzoj1206-[HNOI2005]虚拟内存

    卡读的毒瘤题== 看懂之后用map模拟.或者线段树 #include<cstdio> #include<iostream> #include<cmath> #inc ...

  10. JavaEE进阶集锦(持续更新中)

    1.影响Servlet生命周期的注解:@PostConstruct和@PreDestroy @PostConstruct:被修饰的方法会在服务器加载Servlet的时候运行,并且只会被服务器调用一次, ...