题目链接https://vjudge.net/contest/244167#problem/F

题目

Given any integer base b ≥ 2, it is well known that every positive integer n can be uniquely represented in base b. That is, we can write
 n = a0 + a1 ∗b + a2 ∗b∗b + a3 ∗b∗b∗b + ...
where the coefficients a0,a1,a2,a3,... are between 0 and b−1 (inclusive).
 What is less well known is that if p0,p1,p2,... are the first primes (starting from 2,3,5,...), every positive integer n can be represented uniquely in the “mixed” bases as:
 n = a0 + a1 ∗p0 + a2 ∗p0 ∗p1 + a3 ∗p0 ∗p1 ∗p2 + ...
where each coefficient ai is between 0 and pi −1 (inclusive). Notice that, for example, a3 is between 0 and p3 −1, even though p3 may not be needed explicitly to represent the integer n.
Given a positive integer n, you are asked to write n in the representation above. Do not use more primes than it is needed to represent n, and omit all terms in which the coefficient is 0.
Input
Each line of input consists of a single positive 32-bit signed integer. The end of input is indicated by a line containing the integer ‘0’.
Output
For each integer, print the integer, followed by a space, an equal sign, and a space, followed by the mixed base representation of the integer in the format shown below. The terms should be separated by a space, a plus sign, and a space. The output for each integer should appear on its own line. 
 
Sample Input
123
456
123456
0
 
Sample Output
123 = 1 + 1*2 + 4*2*3*5
456 = 1*2*3 + 1*2*3*5 + 2*2*3*5*7
123456 = 1*2*3 + 6*2*3*5 + 4*2*3*5*7 + 1*2*3*5*7*11 + 4*2*3*5*7*11*13
 
题目大意:意思就是给你一个有符号int整数,让你拆成 n = a0 + a1 ∗p0 + a2 ∗p0 ∗p1 + a3 ∗p0 ∗p1 ∗p2 + ...这种形式,其中p0,p1,p2……,分别表示素数2 3 5……,输出见样例。
 
解题思路:在计蒜客做过一题和这很类似的题,就是拆成上面那种形式,只不过改了下现在拆成下面这种形式,比赛的时候竟然都没去看。。。原理都差不多,就是贪心从最大的开始拆,能拆多少就拆多少,有多余的就是用小的来拆。不断的除和取模就OK了,因为int有符号整型太小了,好像不超过32767,我是先写个程序计算出了2,2*3,2*3*5……乘到9个或者10个就行了,这时候已经远远大于那个范围了,然后就是贪心了。输出的时候注意下就是了,系数为0就可以跳过。
 
附上代码:
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int prime[]={,,,,,,,,};
int b[]={,,,,,,,,,};
int a[]; int main()
{
int n;
while(cin>>n&&n)
{
int x=n;
memset(a,,sizeof(a));
for(int i=;i>=;i--)
{
if(abs(x)>=b[i])
{
a[i]=x/b[i];
x=x%b[i];
}
}
printf("%d = ",n);
int flag=;
if(a[]!=)
{
cout<<"";
flag=;
}
for(int i=;i<=;i++)
{
if(a[i]!=)
{
if(flag) printf(" + ");
cout<<a[i];
for(int j=;j<i;j++)
printf("*%d",prime[j]);
flag=;
}
}
cout<<endl;
}
return ;
}

UVALive - 4225(贪心)的更多相关文章

  1. UVALive 4225 Prime Bases 贪心

    Prime Bases 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&a ...

  2. UVALive 4225 / HDU 2964 Prime Bases 贪心

    Prime Bases Problem Description Given any integer base b >= 2, it is well known that every positi ...

  3. UVALive - 3266 (贪心) 田忌赛马

    耳熟能详的故事,田忌赛马,第一行给出田忌的马的速度,第二行是齐王的马的速度,田忌赢一场得200,输一场失去200,平局不得也不失,问最后田忌最多能得多少钱? 都知道在故事里,田忌用下等马对上等马,中等 ...

  4. UVALive - 6434 (贪心)

    题目链接:https://vjudge.net/problem/UVALive-6434 题意:给你n个数字,要你把这n个数字分成m组,每一组的消耗值定义为改组最大值和最小值之差,要求这m组的消耗值总 ...

  5. Gym 101194D / UVALive 7900 - Ice Cream Tower - [二分+贪心][2016 EC-Final Problem D]

    题目链接: http://codeforces.com/gym/101194/attachments https://icpcarchive.ecs.baylor.edu/index.php?opti ...

  6. 贪心 UVALive 6834 Shopping

    题目传送门 /* 题意:有n个商店排成一条直线,有一些商店有先后顺序,问从0出发走到n+1最少的步数 贪心:对于区间被覆盖的点只进行一次计算,还有那些要往回走的区间步数*2,再加上原来最少要走n+1步 ...

  7. 贪心 UVALive 6832 Bit String Reordering

    题目传送门 /* 贪心:按照0或1开头,若不符合,选择后面最近的进行交换.然后选取最少的交换次数 */ #include <cstdio> #include <algorithm&g ...

  8. UVALive 7147 World Cup(数学+贪心)(2014 Asia Shanghai Regional Contest)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...

  9. UVALive 7146 Defeat the Enemy(贪心+STL)(2014 Asia Shanghai Regional Contest)

    Long long ago there is a strong tribe living on the earth. They always have wars and eonquer others. ...

随机推荐

  1. [转帖]漫画趣解Linux内核

    漫画趣解Linux内核 https://blog.csdn.net/juS3Ve/article/details/84207142 Linux 内核漫画 今天,我来为大家解读一幅来自 TurnOff. ...

  2. Sigma Function

    做完这道题,我明白了人生的一个巨大道理,那就是: 其他题研究两下,做出来几百行.数论码字前研究半天,做出来十几二十行.做完特别没有成就感... 首先说下这题题意:首先,定义一个函数f[n],即为他所有 ...

  3. springboot+ELK+logback日志分析系统demo

    之前写的有点乱,这篇整理了一下搭建了一个简单的ELK日志系统 借鉴此博客完成:https://blog.csdn.net/qq_22211217/article/details/80764568 设置 ...

  4. javax.validation.ValidationException: Unable to create a Configuration, because no Bean Validation provider could be found. Add a provider like Hibernate Validator (RI) to your classpath.

    项目依赖 <dependency> <groupId>javax</groupId> <artifactId>javaee-api</artifa ...

  5. 金蝶CLOUD与EAS的区别

    1.金蝶K/3 WISE主要面向单体制造企业(主要是离散制造企业):2.金蝶K/3 Cloud主要面向业务类型单一(即主营业务单一)的.注重供应链与生产业务协同的.中小型(二层集团??)集团性企业(主 ...

  6. Navicat 远程连接Docker容器中的mysql 报错:1251 - Client does not support authentication protocol 解决办法。

    出现这个问题 首先进入 1.docker exec -it mysql02 bash      //mysql02是mysql容器的别名 2.mysql -uroot -p 3.输入密码 4.进入my ...

  7. java.io.FileNotFoundException关于使用Intellij Idea时系统找不到指定文件的解决方案

    第一种:Intellij Idea 这个智障编辑器 在用的时候 是你在这个web目录下的空文件夹他是不给你部署的 解决在空文件夹下面随便放个文件夹就行了 第二种:也是最笨的方法,但是有前提条件就是 你 ...

  8. MySQL 单个表锁死 对查询语句无响应

    这个时候应该怀疑读取都被加锁,应该尝试使用 show processlist 查看每一个正在运行的进程. 可以看到这样一个列表,里面有使用者即用户,正在使用数据库的 host, 使用的 db 目前的 ...

  9. oracle数据库备份和恢复

    参考地址:https://www.cnblogs.com/1175429393wljblog/p/9529334.html Oracle数据导入导出imp/exp 在cmd的dos命令提示符下执行,而 ...

  10. Lodop打印设计矩形重合预览线条变粗

    LODOP中的打印设计是辅助进行开发的,实际打印效果应以预览为准,很多效果都是在设计界面显示不出来,或设计和预览界面有差异.例如add_print_text文本的字间距.行间距,旋转,还有允许标点溢出 ...