题目链接https://vjudge.net/contest/244167#problem/F

题目

Given any integer base b ≥ 2, it is well known that every positive integer n can be uniquely represented in base b. That is, we can write
 n = a0 + a1 ∗b + a2 ∗b∗b + a3 ∗b∗b∗b + ...
where the coefficients a0,a1,a2,a3,... are between 0 and b−1 (inclusive).
 What is less well known is that if p0,p1,p2,... are the first primes (starting from 2,3,5,...), every positive integer n can be represented uniquely in the “mixed” bases as:
 n = a0 + a1 ∗p0 + a2 ∗p0 ∗p1 + a3 ∗p0 ∗p1 ∗p2 + ...
where each coefficient ai is between 0 and pi −1 (inclusive). Notice that, for example, a3 is between 0 and p3 −1, even though p3 may not be needed explicitly to represent the integer n.
Given a positive integer n, you are asked to write n in the representation above. Do not use more primes than it is needed to represent n, and omit all terms in which the coefficient is 0.
Input
Each line of input consists of a single positive 32-bit signed integer. The end of input is indicated by a line containing the integer ‘0’.
Output
For each integer, print the integer, followed by a space, an equal sign, and a space, followed by the mixed base representation of the integer in the format shown below. The terms should be separated by a space, a plus sign, and a space. The output for each integer should appear on its own line. 
 
Sample Input
123
456
123456
0
 
Sample Output
123 = 1 + 1*2 + 4*2*3*5
456 = 1*2*3 + 1*2*3*5 + 2*2*3*5*7
123456 = 1*2*3 + 6*2*3*5 + 4*2*3*5*7 + 1*2*3*5*7*11 + 4*2*3*5*7*11*13
 
题目大意:意思就是给你一个有符号int整数,让你拆成 n = a0 + a1 ∗p0 + a2 ∗p0 ∗p1 + a3 ∗p0 ∗p1 ∗p2 + ...这种形式,其中p0,p1,p2……,分别表示素数2 3 5……,输出见样例。
 
解题思路:在计蒜客做过一题和这很类似的题,就是拆成上面那种形式,只不过改了下现在拆成下面这种形式,比赛的时候竟然都没去看。。。原理都差不多,就是贪心从最大的开始拆,能拆多少就拆多少,有多余的就是用小的来拆。不断的除和取模就OK了,因为int有符号整型太小了,好像不超过32767,我是先写个程序计算出了2,2*3,2*3*5……乘到9个或者10个就行了,这时候已经远远大于那个范围了,然后就是贪心了。输出的时候注意下就是了,系数为0就可以跳过。
 
附上代码:
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int prime[]={,,,,,,,,};
int b[]={,,,,,,,,,};
int a[]; int main()
{
int n;
while(cin>>n&&n)
{
int x=n;
memset(a,,sizeof(a));
for(int i=;i>=;i--)
{
if(abs(x)>=b[i])
{
a[i]=x/b[i];
x=x%b[i];
}
}
printf("%d = ",n);
int flag=;
if(a[]!=)
{
cout<<"";
flag=;
}
for(int i=;i<=;i++)
{
if(a[i]!=)
{
if(flag) printf(" + ");
cout<<a[i];
for(int j=;j<i;j++)
printf("*%d",prime[j]);
flag=;
}
}
cout<<endl;
}
return ;
}

UVALive - 4225(贪心)的更多相关文章

  1. UVALive 4225 Prime Bases 贪心

    Prime Bases 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&a ...

  2. UVALive 4225 / HDU 2964 Prime Bases 贪心

    Prime Bases Problem Description Given any integer base b >= 2, it is well known that every positi ...

  3. UVALive - 3266 (贪心) 田忌赛马

    耳熟能详的故事,田忌赛马,第一行给出田忌的马的速度,第二行是齐王的马的速度,田忌赢一场得200,输一场失去200,平局不得也不失,问最后田忌最多能得多少钱? 都知道在故事里,田忌用下等马对上等马,中等 ...

  4. UVALive - 6434 (贪心)

    题目链接:https://vjudge.net/problem/UVALive-6434 题意:给你n个数字,要你把这n个数字分成m组,每一组的消耗值定义为改组最大值和最小值之差,要求这m组的消耗值总 ...

  5. Gym 101194D / UVALive 7900 - Ice Cream Tower - [二分+贪心][2016 EC-Final Problem D]

    题目链接: http://codeforces.com/gym/101194/attachments https://icpcarchive.ecs.baylor.edu/index.php?opti ...

  6. 贪心 UVALive 6834 Shopping

    题目传送门 /* 题意:有n个商店排成一条直线,有一些商店有先后顺序,问从0出发走到n+1最少的步数 贪心:对于区间被覆盖的点只进行一次计算,还有那些要往回走的区间步数*2,再加上原来最少要走n+1步 ...

  7. 贪心 UVALive 6832 Bit String Reordering

    题目传送门 /* 贪心:按照0或1开头,若不符合,选择后面最近的进行交换.然后选取最少的交换次数 */ #include <cstdio> #include <algorithm&g ...

  8. UVALive 7147 World Cup(数学+贪心)(2014 Asia Shanghai Regional Contest)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...

  9. UVALive 7146 Defeat the Enemy(贪心+STL)(2014 Asia Shanghai Regional Contest)

    Long long ago there is a strong tribe living on the earth. They always have wars and eonquer others. ...

随机推荐

  1. React Native之通知栏消息提示(android)

    React Native之通知栏消息提示(android) 一,需求分析与概述 1.1,推送作为手机应用的基本功能,是手机应用的重要部分,如果自己实现一套推送系统费时费力,所以大部分的应用都会选择使用 ...

  2. MT4下载历史数据

    这个网站只能下载2001年-当前时间前一个月的数据,还是挺全的.但是下载下来之后好像是一分钟图的,妈蛋其实我想要1小时图的EURUSD历史数据. 网站地址:http://www.fxfupan.com ...

  3. 在linux和本地系统之间进行数据传输的简单方法--lrzsz

    lrzsz是一款在linux里可代替ftp上传和下载的程序. >>提君博客原创  http://www.cnblogs.com/tijun/  << 提君博客原创 安装和使用非 ...

  4. python爬虫之正则表达式

    一.简介 正则表达式,又称正规表示式.正规表示法.正规表达式.规则表达式.常规表示法(英语:Regular Expression,在代码中常简写为regex.regexp或RE),计算机科学的一个概念 ...

  5. flask Django保存session区别

    '''Django中,session保存在服务端的数据库中,数据库中保存请求用户的所有数据,服务端数据中{'随机字符串':加密后的客户相关信息}请求完成后,把随机字符串作为值,返回给客户端,保存在客户 ...

  6. js正則表達式

    正則表達式實例化的兩種方式: 字符型 var a=// 對象型var a=new RegExp(,) 修飾符: i:忽略大小寫 g:全局搜索 m:多行搜索 元字符: \轉義字符 \w:字符,數字,下劃 ...

  7. codeforces-div2-449-B

    题意:确定一个回文偶数十进制数字,输入k和q,求前k小的和对q取余的值 解题思路:首先确定一个,第k个回文偶数一定前半段一定是k,比如第12个,这个数就是1221: 代码: #include<i ...

  8. Nginx 缓存深入理解

    100课陶辉 proxy_cache_methods 指令主要是根据请求方法指定是否使用缓存 Syntax: proxy_cache_methods GET | HEAD | POST ...; De ...

  9. python---反射详解

    反射即想到4个内置函数分别为:getattr.hasattr.setattr.delattr  获取成员.检查成员.设置成员.删除成员 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

  10. SQL Server使用笔记

    1.连接字符串 SQL Server 身份验证,如:"server=yqzhu-peter;database=WindWMNew1_DB;uid=sa;pwd=ABcd1234;Connec ...