python异步编程之asyncio(百万并发)
前言:python由于GIL(全局锁)的存在,不能发挥多核的优势,其性能一直饱受诟病。然而在IO密集型的网络编程里,异步处理比同步处理能提升成百上千倍的效率,弥补了python性能方面的短板,如最新的微服务框架japronto,resquests per second可达百万级。
python还有一个优势是库(第三方库)极为丰富,运用十分方便。asyncio是python3.4版本引入到标准库,python2x没有加这个库,毕竟python3x才是未来啊,哈哈!python3.5又加入了async/await特性。
在学习asyncio之前,我们先来理清楚同步/异步的概念:
·同步是指完成事务的逻辑,先执行第一个事务,如果阻塞了,会一直等待,直到这个事务完成,再执行第二个事务,顺序执行。。。
·异步是和同步相对的,异步是指在处理调用这个事务的之后,不会等待这个事务的处理结果,直接处理第二个事务去了,通过状态、通知、回调来通知调用者处理结果。
一、asyncio
下面通过举例来对比同步代码和异步代码编写方面的差异,其次看下两者性能上的差距,我们使用sleep(1)模拟耗时1秒的io操作。
·同步代码:

import time def hello():
time.sleep(1) def run():
for i in range(5):
hello()
print('Hello World:%s' % time.time()) # 任何伟大的代码都是从Hello World 开始的!
if __name__ == '__main__':
run()

输出:(间隔约是1s)
Hello World:1527595175.4728756
Hello World:1527595176.473001
Hello World:1527595177.473494
Hello World:1527595178.4739306
Hello World:1527595179.474482
·异步代码:

import time
import asyncio # 定义异步函数
async def hello():
asyncio.sleep(1)
print('Hello World:%s' % time.time()) def run():
for i in range(5):
loop.run_until_complete(hello()) loop = asyncio.get_event_loop()
if __name__ =='__main__':
run()

输出:
Hello World:1527595104.8338501
Hello World:1527595104.8338501
Hello World:1527595104.8338501
Hello World:1527595104.8338501
Hello World:1527595104.8338501
async def 用来定义异步函数,其内部有异步操作。每个线程有一个事件循环,主线程调用asyncio.get_event_loop()时会创建事件循环,你需要把异步的任务丢给这个循环的run_until_complete()方法,事件循环会安排协同程序的执行。
二、aiohttp
如果需要并发http请求怎么办呢,通常是用requests,但requests是同步的库,如果想异步的话需要引入aiohttp。这里引入一个类,from aiohttp import ClientSession,首先要建立一个session对象,然后用session对象去打开网页。session可以进行多项操作,比如post, get, put, head等。
基本用法:
async with ClientSession() as session:
async with session.get(url) as response:
aiohttp异步实现的例子:

import asyncio
from aiohttp import ClientSession tasks = []
url = "https://www.baidu.com/{}"
async def hello(url):
async with ClientSession() as session:
async with session.get(url) as response:
response = await response.read()
print(response) if __name__ == '__main__':
loop = asyncio.get_event_loop()
loop.run_until_complete(hello(url))

首先async def 关键字定义了这是个异步函数,await 关键字加在需要等待的操作前面,response.read()等待request响应,是个耗IO操作。然后使用ClientSession类发起http请求。
多链接异步访问
如果我们需要请求多个URL该怎么办呢,同步的做法访问多个URL只需要加个for循环就可以了。但异步的实现方式并没那么容易,在之前的基础上需要将hello()包装在asyncio的Future对象中,然后将Future对象列表作为任务传递给事件循环。

import time
import asyncio
from aiohttp import ClientSession tasks = []
url = "https://www.baidu.com/{}"
async def hello(url):
async with ClientSession() as session:
async with session.get(url) as response:
response = await response.read()
# print(response)
print('Hello World:%s' % time.time()) def run():
for i in range(5):
task = asyncio.ensure_future(hello(url.format(i)))
tasks.append(task) if __name__ == '__main__':
loop = asyncio.get_event_loop()
run()
loop.run_until_complete(asyncio.wait(tasks))

输出:
Hello World:1527754874.8915546
Hello World:1527754874.899039
Hello World:1527754874.90004
Hello World:1527754874.9095392
Hello World:1527754874.9190395
收集http响应
好了,上面介绍了访问不同链接的异步实现方式,但是我们只是发出了请求,如果要把响应一一收集到一个列表中,最后保存到本地或者打印出来要怎么实现呢,可通过asyncio.gather(*tasks)将响应全部收集起来,具体通过下面实例来演示。

import time
import asyncio
from aiohttp import ClientSession tasks = []
url = "https://www.baidu.com/{}"
async def hello(url):
async with ClientSession() as session:
async with session.get(url) as response:
# print(response)
print('Hello World:%s' % time.time())
return await response.read() def run():
for i in range(5):
task = asyncio.ensure_future(hello(url.format(i)))
tasks.append(task)
result = loop.run_until_complete(asyncio.gather(*tasks))
print(result) if __name__ == '__main__':
loop = asyncio.get_event_loop()
run()

输出:

Hello World:1527765369.0785167
Hello World:1527765369.0845182
Hello World:1527765369.0910277
Hello World:1527765369.0920424
Hello World:1527765369.097017
[b'<!DOCTYPE html>\r\n<!--STATUS OK-->\r\n<html>\r\n<head>\r\n......

异常解决
假如你的并发达到2000个,程序会报错:ValueError: too many file descriptors in select()。报错的原因字面上看是 Python 调取的 select 对打开的文件有最大数量的限制,这个其实是操作系统的限制,linux打开文件的最大数默认是1024,windows默认是509,超过了这个值,程序就开始报错。这里我们有三种方法解决这个问题:
1.限制并发数量。(一次不要塞那么多任务,或者限制最大并发数量)
2.使用回调的方式。
3.修改操作系统打开文件数的最大限制,在系统里有个配置文件可以修改默认值,具体步骤不再说明了。
不修改系统默认配置的话,个人推荐限制并发数的方法,设置并发数为500,处理速度更快。

#coding:utf-8
import time,asyncio,aiohttp url = 'https://www.baidu.com/'
async def hello(url,semaphore):
async with semaphore:
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
return await response.read() async def run():
semaphore = asyncio.Semaphore(500) # 限制并发量为500
to_get = [hello(url.format(),semaphore) for _ in range(1000)] #总共1000任务
await asyncio.wait(to_get) if __name__ == '__main__':
# now=lambda :time.time()
loop = asyncio.get_event_loop()
loop.run_until_complete(run())
loop.close()
python异步编程之asyncio(百万并发)的更多相关文章
- python异步编程之asyncio
python异步编程之asyncio 前言:python由于GIL(全局锁)的存在,不能发挥多核的优势,其性能一直饱受诟病.然而在IO密集型的网络编程里,异步处理比同步处理能提升成百上千倍的效率, ...
- 异步编程之asyncio简单介绍
引言: python由于GIL(全局锁)的存在,不能发挥多核的优势,其性能一直饱受诟病.然而在IO密集型的网络编程里,异步处理比同步处理能提升成百上千倍的效率,弥补了python性能方面的短板. as ...
- python并发编程之asyncio协程(三)
协程实现了在单线程下的并发,每个协程共享线程的几乎所有的资源,除了协程自己私有的上下文栈:协程的切换属于程序级别的切换,对于操作系统来说是无感知的,因此切换速度更快.开销更小.效率更高,在有多IO操作 ...
- 异步编程之Promise(3):拓展进阶
异步编程系列教程: (翻译)异步编程之Promise(1)--初见魅力 异步编程之Promise(2):探究原理 异步编程之Promise(3):拓展进阶 异步编程之Generator(1)--领略魅 ...
- net异步编程之await
net异步编程之await 初探asp.net异步编程之await 终于毕业了,也顺利进入一家期望的旅游互联网公司.27号入职.放肆了一个多月没写代码,好方啊. 另外一下观点均主要针对于await ...
- Python 多进程编程之multiprocessing--Pool
Python 多进程编程之multiprocessing--Pool ----当需要创建的子进程数量不多的时候,可以直接利用multiprocessing 中的Process 动态生成多个进程, -- ...
- 异步编程之Generator(1)——领略魅力
异步编程系列教程: (翻译)异步编程之Promise(1)--初见魅力 异步编程之Promise(2):探究原理 异步编程之Promise(3):拓展进阶 异步编程之Generator(1)--领略魅 ...
- 异步编程之Promise(2):探究原理
异步编程系列教程: (翻译)异步编程之Promise(1)--初见魅力 异步编程之Promise(2):探究原理 异步编程之Promise(3):拓展进阶 异步编程之Generator(1)--领略魅 ...
- (翻译)异步编程之Promise(1):初见魅力
原文:https://www.promisejs.org/ by Forbes Lindesay 异步编程系列教程: (翻译)异步编程之Promise(1)--初见魅力 异步编程之Promise(2) ...
随机推荐
- matlab——sparse函数和full函数
转载:http://www.cnblogs.com/lihuidashen/p/3435883.html matlab——sparse函数和full函数(稀疏矩阵和非稀疏矩阵转换) 函数功能:生成 ...
- 使用update可以防止并发问题(保证数据的准确性),如果使用select会产生并发问题 ; select * from xx for update 给查询开启事务,默认情况下是没有事物的
update可以锁住数据防止数据被更新且导致与查询出的数据有误差,如果响应条数为0.说明更新失败 则可以回滚事务;
- 【嵌入式】Arduino编程基础到应用全解析
Arduino Author: Andrew.Du 基础 基础语法: setup() loop() pinMode(引脚,模式) pinMode(13,OUTPUT):设置13号引脚为输出 //在使用 ...
- Codeforces Round #423 Div. 1
A:暴力赋值即可,并查集维护下一个未被赋值的位置. #include<iostream> #include<cstdio> #include<cmath> #inc ...
- Codeforces Round #470 Div. 1
A:暴力枚举x2的因子,由此暴力枚举x1,显然此时减去其最大质因子并+1即为最小x0. #include<iostream> #include<cstdio> #include ...
- 洛谷P1048采药题解
题目 这是一个裸的01背包,因为题目中没说可以采好多次,不多说上代码, #include<iostream> using namespace std; int main() { int n ...
- 全局最小割Stoer-Wagner算法
借鉴:http://blog.kongfy.com/2015/02/kargermincut/ 提到无向图的最小割问题,首先想到的就是Ford-Fulkerson算法解s-t最小割,通过Edmonds ...
- 【XSY2166】Hope 分治 FFT
题目描述 对于一个\(1\)到\(n\)的排列\(a_1,a_2,a_3,\ldots,a_n\),我们定义这个排列的\(P\)值和\(Q\)值: 对于每个\(a_i\),如果存在一个最小的\(j\) ...
- 【模板】可持久化文艺平衡树-可持久化treap
题目链接 题意 对于各个以往的历史版本实现以下操作: 在第 p 个数后插入数 x . 删除第 p 个数. 翻转区间 [l,r],例如原序列是 \(\{5,4,3,2,1\}\),翻转区间 [2,4] ...
- 【hihocoder1167】高等理论计算机科学 (重链剖分 +树状数组)
Descroption 原题链接给你一棵\(~n~\)个点的树和\(~m~\)条链,求两两相交的链有多少对,两条链相交当且仅当有至少一个公共点.\(~1 \leq n, m \leq 10 ^ 5~\ ...