(Dijkstra) POJ2387 Til the Cows Come Home
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 81024 | Accepted: 26725 |
Description
Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.
Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.
Input
* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.
Output
Sample Input
5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100
Sample Output
90
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
const int maxn = ;
const int INF = 0x3f3f3f3f;
int mp[maxn][maxn],dis[maxn],vis[maxn];
int edge,node;
void dijkstra(){
for(int i = ; i <= node; i++){
dis[i] = mp[][i];
}
for(int i = ; i < node; i++){
int minn = INF,u;
for(int j = ; j <= node; j++){
if(vis[j] == && dis[j] < minn){
minn = dis[j];
u = j;
}
}
vis[u] = ;
for(int j = ; j <= node; j++){
if(vis[j] == && dis[u] + mp[u][j] < dis[j]){
dis[j] = mp[u][j] + dis[u];
}
}
}
printf("%d\n",dis[node]);
}
int main(){
while(~scanf("%d%d",&edge,&node)){
for(int i = ; i <= node; i++){
for(int j = ; j <= node; j++){
if(i==j)
mp[i][j] = ;
else
mp[i][j] = INF;
}
}
memset(vis,,sizeof(vis));
int m,n,t;
for(int i = ; i < edge; i++){
scanf("%d%d%d",&n,&m,&t);
if(t < mp[m][n]){
mp[m][n] = mp[n][m] = t;
}
}
dijkstra();
}
return ;
}
(Dijkstra) POJ2387 Til the Cows Come Home的更多相关文章
- POJ2387 Til the Cows Come Home (最短路 dijkstra)
AC代码 POJ2387 Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to ...
- POJ2387 Til the Cows Come Home(SPFA + dijkstra + BallemFord 模板)
Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 37662 Accepted ...
- POj2387——Til the Cows Come Home——————【最短路】
A - Til the Cows Come Home Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & ...
- poj2387 Til the Cows Come Home 最短路径dijkstra算法
Description Bessie is out in the field and wants to get back to the barn to get as much sleep as pos ...
- poj2387 Til the Cows Come Home(Dijkstra)
题目链接 http://poj.org/problem?id=2387 题意 有n个路标,编号1~n,输入路标编号及路标之间相隔的距离,求从路标n到路标1的最短路径(由于是无向图,所以也就是求从路标1 ...
- POJ2387 Til the Cows Come Home 【Dijkstra】
题目链接:http://poj.org/problem?id=2387 题目大意; 题意:给出两个整数T,N,然后输入一些点直接的距离,求N和1之间的最短距离.. 思路:dijkstra求单源最短路, ...
- POJ-2387.Til the Cows Come Home.(五种方法:Dijkstra + Dijkstra堆优化 + Bellman-Ford + SPFA + Floyd-Warshall)
昨天刚学习完最短路的算法,今天开始练题发现我是真的菜呀,居然能忘记邻接表是怎么写的,真的是菜的真实...... 为了弥补自己的菜,我决定这道题我就要用五种办法写出,并在Dijkstra算法堆优化中另外 ...
- poj2387 Til the Cows Come Home
解题思路:最短路的模板题,注意一个细节处理即可. 见代码: #include<cstdio> #include<cstring> #include<algorithm&g ...
- POJ-2387 Til the Cows Come Home ( 最短路 )
题目链接: http://poj.org/problem?id=2387 Description Bessie is out in the field and wants to get back to ...
随机推荐
- powerdesigner 16.5 不允许有扩展属性,或对象不存在
创建完之后这边会出现 选择刚创建的用户 这样就可以了
- 常用css样式处理
1:如何设置html的input框的高度和宽度! 用style来设置,<input style="width:111px;height:111px">
- Java 下载 HLS (m3u8) 视频
下载索引文件 public String getIndexFile() throws Exception{ URL url = new URL(originUrlpath); //下载资源 Buffe ...
- Nginx stream如何获取ssl信息并反向代理至上游服务器
L:116
- Qt5 入门
main()函数中第一句是创建一个QApplication类的实例. 对于 Qt 程序来说,main()函数一般以创建 application 对象(GUI 程序是QApplication,非 GUI ...
- Codeforces Round #543 (Div. 2, based on Technocup 2019 Final Round)
A. Technogoblet of Fire 题意:n个人分别属于m个不同的学校 每个学校的最强者能够选中 黑客要使 k个他选中的可以稳被选 所以就为这k个人伪造学校 问最小需要伪造多少个 思路:记 ...
- xml 模块
XML ———可扩展的标记语言 也是一种通用的数据格式 之所以用它 也是因为跨平台 XML 的语法格式: 1,任何的起始标签都必须有一个结束标签. <> 起始标签 </>结束标 ...
- 【BZOJ3816】【清华集训2014】矩阵变换 稳定婚姻问题
题目描述 给出一个\(n\)行\(m\)列的矩阵\(A\), 保证满足以下性质: 1.\(m>n\). 2.矩阵中每个数都是\([0,n]\)中的自然数. 3.每行中,\([1,n]\)中每个自 ...
- PHP 事务写法
$md=new Model(); //创建事务 $md->startTrans(); //开始事务 $md->table("ym_xxx")->where(&qu ...
- MT【243】球内接四面体体积
已知半径为2的球面上有$A,B,C,D$四点,若$AB=CD=2$,则四面体$ABCD$的体积最大为____ 解答:利用$V=\dfrac{1}{6}|AB||CD|d<AB,CD>sin ...