Til the Cows Come Home
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 81024   Accepted: 26725

Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

Input

* Line 1: Two integers: T and N

* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

Output

* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

Sample Output

90
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
const int maxn = ;
const int INF = 0x3f3f3f3f;
int mp[maxn][maxn],dis[maxn],vis[maxn];
int edge,node;
void dijkstra(){
for(int i = ; i <= node; i++){
dis[i] = mp[][i];
}
for(int i = ; i < node; i++){
int minn = INF,u;
for(int j = ; j <= node; j++){
if(vis[j] == && dis[j] < minn){
minn = dis[j];
u = j;
}
}
vis[u] = ;
for(int j = ; j <= node; j++){
if(vis[j] == && dis[u] + mp[u][j] < dis[j]){
dis[j] = mp[u][j] + dis[u];
}
}
}
printf("%d\n",dis[node]);
}
int main(){
while(~scanf("%d%d",&edge,&node)){
for(int i = ; i <= node; i++){
for(int j = ; j <= node; j++){
if(i==j)
mp[i][j] = ;
else
mp[i][j] = INF;
}
}
memset(vis,,sizeof(vis));
int m,n,t;
for(int i = ; i < edge; i++){
scanf("%d%d%d",&n,&m,&t);
if(t < mp[m][n]){
mp[m][n] = mp[n][m] = t;
}
}
dijkstra();
}
return ;
}

(Dijkstra) POJ2387 Til the Cows Come Home的更多相关文章

  1. POJ2387 Til the Cows Come Home (最短路 dijkstra)

    AC代码 POJ2387 Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to ...

  2. POJ2387 Til the Cows Come Home(SPFA + dijkstra + BallemFord 模板)

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 37662   Accepted ...

  3. POj2387——Til the Cows Come Home——————【最短路】

    A - Til the Cows Come Home Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & ...

  4. poj2387 Til the Cows Come Home 最短路径dijkstra算法

    Description Bessie is out in the field and wants to get back to the barn to get as much sleep as pos ...

  5. poj2387 Til the Cows Come Home(Dijkstra)

    题目链接 http://poj.org/problem?id=2387 题意 有n个路标,编号1~n,输入路标编号及路标之间相隔的距离,求从路标n到路标1的最短路径(由于是无向图,所以也就是求从路标1 ...

  6. POJ2387 Til the Cows Come Home 【Dijkstra】

    题目链接:http://poj.org/problem?id=2387 题目大意; 题意:给出两个整数T,N,然后输入一些点直接的距离,求N和1之间的最短距离.. 思路:dijkstra求单源最短路, ...

  7. POJ-2387.Til the Cows Come Home.(五种方法:Dijkstra + Dijkstra堆优化 + Bellman-Ford + SPFA + Floyd-Warshall)

    昨天刚学习完最短路的算法,今天开始练题发现我是真的菜呀,居然能忘记邻接表是怎么写的,真的是菜的真实...... 为了弥补自己的菜,我决定这道题我就要用五种办法写出,并在Dijkstra算法堆优化中另外 ...

  8. poj2387 Til the Cows Come Home

    解题思路:最短路的模板题,注意一个细节处理即可. 见代码: #include<cstdio> #include<cstring> #include<algorithm&g ...

  9. POJ-2387 Til the Cows Come Home ( 最短路 )

    题目链接: http://poj.org/problem?id=2387 Description Bessie is out in the field and wants to get back to ...

随机推荐

  1. Lodop打印html数字间隔不一致

    在font-size属性控制数字大小的时候,可能会出现数字间隔有问题,间隔不一致,可尝试用其他字体大小试试,一般字体越小,越可能出现问题. 如图,前两个打印项都是form1,样式一个是style1,一 ...

  2. Windows Server 2012 添加角色时出现 failed to open runspace pool

    先把所有的Windows Server 2012的更新更新了.再来添加服务器角色.就不会再出现 The Server Manager WinRM plug-in might be corrupted ...

  3. codeforces496C

    Removing Columns CodeForces - 496C You are given an n × m rectangular table consisting of lower case ...

  4. Jarvis OJ A Piece Of Cake

    看图片的隐写术自闭,本来想看一看jarvisoj 的basic放松一下心情,结果一道题就做了一晚上qwq 首先看到这道题的时候想到的是凯撒密码(这其实是Google之后才知道这个名字的)枚举了26种位 ...

  5. MySQL的my.cnf文件(解决5.7.18下没有my-default.cnf)

    官网说:从5.7.18开始不在二进制包中提供my-default.cnf文件.参考:https://dev.mysql.com/doc/refman/5.7/en/binary-installatio ...

  6. Elasticsearch 聚合统计与SQL聚合统计语法对比(一)

    Es相比关系型数据库在数据检索方面有着极大的优势,在处理亿级数据时,可谓是毫秒级响应,我们在使用Es时不仅仅进行简单的查询,有时候会做一些数据统计与分析,如果你以前是使用的关系型数据库,那么Es的数据 ...

  7. Elasticsearch 5.x 字段折叠的使用

    在Elasticsearch 5.x  之前,如果实现一个数据折叠的功能是非常复杂的,随着5.X的更新,这一问题变得简单,找到了一遍技术文章,对这个问题描述的非常清楚,收藏下. 参考:https:// ...

  8. pfSense用户界面汉化翻译教程

    pfSense用户界面汉化翻译教程 来源 https://blog.51cto.com/fxn2025/2087182 为了记录自己的汉化过程,同时也为了方便网友自己制作汉化版本,我把自己汉化pfSe ...

  9. 计算几何细节梳理&模板

    点击%XZY巨佬 向量的板子 #include<bits/stdc++.h> #define I inline using namespace std; typedef double DB ...

  10. Android客户端与数据库交互数据的简单学习

    Ø  数据库整理方案如下: 一.Android+ webservices+SQLServer  : 通过webservices客户端向指定服务器发送请求,服务器响应返回指定格式的数据,如json或者x ...