一个有关FWT&FMT的东西
这篇文章在讲什么
相信大家都会FWT和FMT。
如果你不会,推荐你去看一下VFK的2015国家集训队论文。
设全集为\(U=\{1,2,\ldots,n\}\),假设我们关心的\(f_S\)中的集合\(S\)是\(U\)的子集。
给你\(c_i,d_i\),令
\[
b_i=(1+c_ix^{d_i})
\]
求
\[
g=\prod_{i}b_i
\]
其中两个集合幂级数的乘积为集合并卷积(or)/集合对称差卷积(xor)中的一种。
不妨设\(d_S\)互不相同(否则可以用DP/组合数什么的搞一下)。
令
\[
\begin{align}
a_S&=\sum_{d_i=S}c_i\\
f_S&=1+a_Sx^S
\end{align}
\]
暴力做法
对于每一个集合幂级数暴力做一遍FMT/FWT,然后直接乘在一起,再变换回去。
时间复杂度:\(O(n4^n)\)
这个做法太慢了,因为它没有用到本题的特殊条件。
集合或卷积
对于一个集合幂级数\(f\),定义\(f\)的莫比乌斯变换为集合幂级数\(\hat f\),其中
\[
\begin{align}
\hat f_S=\sum_{T\subseteq S}f_T
\end{align}
\]
反过来,定义\(\hat f\)的莫比乌斯反演为\(f\),由容斥原理可以得到
\[
f_S=\sum_{T\subseteq S}{(-1)}^{|S|-|T|}\hat f_T
\]
相信大家都熟悉以上内容。
回到我们要求的那条式子:
\[
\begin{align}
\hat g_T&=\prod_S \hat{f_{S}}_T\\
&=\prod_S \sum_{K\subseteq T}f_{S,K}\\
&=\prod_{S\subseteq T}{(1+a_S)}
\end{align}
\]
是不是发现和普通的莫比乌斯变换很像?
把所有\(a_S\)加上\(1\),把莫比乌斯变换的加法改成乘法,就可以得到\(\hat g_T\)了。
时间复杂度:\(O(n2^n)\)
集合对称差卷积
还是要用到那几条式子。
\[
\begin{align}
\hat g_T&=\prod_S\hat {f_S}_T\\
&=\prod_S\sum_{K}f_{S,K}{(-1)}^{|K\cap T|}\\
&=\prod_S(1+a_S{(-1)}^{|S\cap T|})
\end{align}
\]
这个和沃尔什变换也很像,但是\({(-1)}^{|S\cap T|}\)只乘在了\(a_S\)上面,所以不能把\(a_S\)加\(1\)后做变种沃尔什变换。
但是我们可以再维护一个\(\hat h_T=\prod_S(1-a_S{(-1)}^{|S\cap T|})\),把沃尔什变换中的\(-\hat g_T\)全部换成\(\hat h_T\),就可以做了。
时间复杂度:\(O(n2^n)\)
代码
先坑着
(http://uoj.ac/submission/236983)
一个有关FWT&FMT的东西的更多相关文章
- [学习笔记&教程] 信号, 集合, 多项式, 以及各种卷积性变换 (FFT,NTT,FWT,FMT)
目录 信号, 集合, 多项式, 以及卷积性变换 卷积 卷积性变换 傅里叶变换与信号 引入: 信号分析 变换的基础: 复数 傅里叶变换 离散傅里叶变换 FFT 与多项式 \(n\) 次单位复根 消去引理 ...
- C# 中利用反射机制拷贝类的字段和属性(拷贝一个类对象的所有东西付给另一个类对象,而不是付给引用地址)
from:https://blog.csdn.net/poxiaohai2011/article/details/27555951 //C# 中利用反射机制拷贝类的字段和属性(拷贝一个类对象的所有东西 ...
- @总结 - 2@ 位运算卷积/子集卷积 —— FWT/FMT
目录 @0 - 参考资料@ @1 - 异或卷积概念及性质@ @2 - 快速沃尔什正变换(异或)@ @3 - 快速沃尔什逆变换(异或)@ @4 - 与卷积.或卷积@ @5 - 参考代码实现@ @6 - ...
- 【学习笔记】fwt&&fmt&&子集卷积
前言:yyb神仙的博客 FWT 基本思路:将多项式变成点值表达,点值相乘之后再逆变换回来得到特定形式的卷积: 多项式的次数界都为\(2^n\)的形式,\(A_0\)定义为前一半多项式(下标二进制第一位 ...
- 在ASP.NET下做了一个实验MVC的小东西
星期五下班前一时兴起,对MVC发表了一点看法.后来就想干脆弄个小东西来验证一些自己的想法帮组理清思路.所要源代码的免了,3个小时的急就章实在是乱得可以,既没有好的架构,也没有任何代码质量可言,主要是实 ...
- [WC2018]州区划分(状压DP+FWT/FMT)
很裸的子集反演模板题,套上一些莫名其妙的外衣. 先预处理每个集合是否合法,再作显然的状压DP.然后发现可以写成子集反演的形式,直接套模板即可. 子集反演可以看这里. 子集反演的过程就是多设一维代表集合 ...
- 《转》架设一个BLOG需要整合多少东西?
本文转载自大CC 1 Wordpress本身需要花费功夫的地方不多,比较容易,但Themes要花不少功夫调整,有时还得改CSS.推荐几个Wordpress Themes网站: - http://the ...
- 推荐一个IT人必备的东西【用过的都懂,让我们的环境越来越好吧】
有个东西叫IT人手册,不知道各位有用过吗?不过很可惜以前那个关掉了,那个网站说出了我们IT人太多的新声以及一些黑心公司,不过被迫压力下关闭了 我不是托,我只是分享 我觉得这种东西应该存在下去~!!!至 ...
- 贴一个CMemDC 代码,这东西真不错噢,短小精悍,可谓极品
罗索客 发布于 2006-11-28 21:53 点击:3941次 来自: 原文: http://yuantao82.spaces.live.com/Blog/cns!8FC0A772D812A22 ...
随机推荐
- R语言绘制QQ图
无论是直方图还是经验分布图,要从比较上鉴别样本是否处近似于某种类型的分布是困难的 QQ图可以帮我们鉴别样本的分布是否近似于某种类型的分布 R语言,代码如下: > qqnorm(w);qqline ...
- PS调出怀旧雨中特写的非主流照片
原图 最终效果 一.打开原图素材,按Ctrl + ALt + ~ 调出高光选区,按Ctrl + Shift + I 反选,然后创建曲线调整图层,适当调暗一点. 二.合并所有图层,点通道面板,选择蓝色通 ...
- 每周分享之JS数组的使用
数组,一堆数字归为一组,就是一个数组,一堆对象放在一个组里,也是一个数组,概念很容易懂,说白了就是一个有限集合. JS数组的语法无法两种,插入和移除(语法自行科普).用处挺常见的,既然数组是一个集合, ...
- Python_程序实现发红包
发红包 200块钱 20个红包 将200块随机分成20份 基础版本: import random ret = random.sample(range(1, 200 * 100), 19) ret = ...
- stark组件配置,二层URL
1.django的admin配置 2 stark组件开发 3.2层url分发 4.小结 1.django的admin配置 model.py from django.db import models # ...
- [转帖]BRD、MRD 和 PRD
来源: https://www.zhihu.com/question/19655491 BRD 商业需求文档 Business Requirement Document MRD 市场需求文档 Mark ...
- Day2 列表,元组,字典,集合
一,列表 定义:[]内以逗号分隔,按照索引,存放各种数据类型,每个位置代表一个元素. list=['alex', 'jack', 'chen', 'shaoye'] #创建一个列表. 特性: 1.可存 ...
- java 中Excel的导入导出
部分转发原作者https://www.cnblogs.com/qdhxhz/p/8137282.html雨点的名字 的内容 java代码中的导入导出 首先在d盘创建一个xlsx文件,然后再进行一系列 ...
- python爬虫之短信报警
1 import smtplib import email.mime.multipart import email.mime.text def send_email(content=''): &quo ...
- python爬虫之初始scrapy
简介: Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中. 其最初是为了 页面抓取 (更确切来说, 网络抓取 )所设 ...