A* + dijkstra/spfa

第K短路的模板题,就是直接把最短路当成估价函数,保证估价函数的性质(从当前状态转移的估计值一定不大于实际值)

我们建反图从终点跑最短路,就能求出从各个点到终点的最短距离,这样就能满足估价函数的性质了

要注意一点,当起点和终点一样的时候第k短路就变成k+1短了,因为0也算一条。。。

话说回来为啥我用pair就MLE了呢。。。。

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C yql){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % yql)if(p & 1)ans = 1LL * x * ans % yql;
return ans;
}
const int N = 1005;
int n, m, k, s, t, cnt1, cnt2, head1[N], head2[N], dist[N], num[N], w[N];
bool vis[N];
struct Edge{ int v, next, dis; } edge1[100005], edge2[100005]; struct Point{
int s, dis;
bool operator < (const Point &rhs) const {
return dis > rhs.dis;
}
Point(int s, int dis): s(s), dis(dis){}
}; struct Node{
int v, f, g;
Node(int v, int f, int g): v(v), f(f), g(g){}
bool operator < (const Node &rhs) const{
return f + g > rhs.f + rhs.g;
}
}; void addEdge1(int a, int b, int c){
edge1[cnt1].v = b, edge1[cnt1].next = head1[a], edge1[cnt1].dis = c;
head1[a] = cnt1 ++;
} void addEdge2(int a, int b, int c){
edge2[cnt2].v = b, edge2[cnt2].next = head2[a], edge2[cnt2].dis = c;
head2[a] = cnt2 ++;
} void dijkstra(){
fill(dist, dist + N, INF);
priority_queue<Point> pq;
dist[t] = 0;
pq.push(Point(t, dist[t]));
while(!pq.empty()){
int s = pq.top().s, d = pq.top().dis; pq.pop();
if(vis[s]) continue;
vis[s] = true;
for(int i = head2[s]; i != -1; i = edge2[i].next){
int u = edge2[i].v;
if(dist[u] > d + edge2[i].dis){
dist[u] = d + edge2[i].dis;
pq.push(Point(u, dist[u]));
}
}
}
} int astar(){
if(dist[s] == INF) return -1;
if(s == t) k ++;
priority_queue<Node> pq;
pq.push(Node(s, dist[s], 0));
while(!pq.empty()){
Node cur = pq.top(); pq.pop();
num[cur.v] ++;
if(cur.v == t && num[cur.v] == k) return cur.f + cur.g;
if(num[cur.v] > k) continue;
for(int i = head1[cur.v]; i != -1; i = edge1[i].next){
int u = edge1[i].v;
if(num[u] == k) continue;
pq.push(Node(u, dist[u], cur.g + edge1[i].dis));
}
}
return -1;
} void init(){
cnt1 = cnt2 = 0;
memset(head1, -1, sizeof head1);
memset(head2, -1, sizeof head2);
} int main(){ while(scanf("%d%d", &n, &m) != EOF){
init();
for(int i = 0; i < m; i++){
int a, b, c; scanf("%d%d%d", &a, &b, &c);
addEdge1(a, b, c), addEdge2(b, a, c);
}
scanf("%d%d%d", &s, &t, &k);
dijkstra();
printf("%d\n", astar());
}
return 0;
}

POJ 2449 Remmarguts' Date (算竞进阶习题)的更多相关文章

  1. POJ 1015 Jury Compromise (算竞进阶习题)

    01背包 我们对于这类选或者不选的模型应该先思考能否用01背包来解. 毫无疑问物体的价值可以看成最大的d+p值,那么体积呢?题目的另一个限制条件是d-p的和的绝对值最小,这启发我们把每个物体的d-p的 ...

  2. POJ 2245 Addition Chains(算竞进阶习题)

    迭代加深dfs 每次控制序列的长度,依次加深搜索 有几个剪枝: 优化搜索顺序,从大往下枚举i, j这样能够让序列中的数尽快逼近n 对于不同i,j和可能是相等的,在枚举的时候用过的数肯定不会再被填上所以 ...

  3. poj 2449 Remmarguts' Date(第K短路问题 Dijkstra+A*)

    http://poj.org/problem?id=2449 Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Subm ...

  4. poj 2449 Remmarguts' Date (k短路模板)

    Remmarguts' Date http://poj.org/problem?id=2449 Time Limit: 4000MS   Memory Limit: 65536K Total Subm ...

  5. 图论(A*算法,K短路) :POJ 2449 Remmarguts' Date

    Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 25216   Accepted: 6882 ...

  6. poj 2449 Remmarguts' Date 第k短路 (最短路变形)

    Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 33606   Accepted: 9116 ...

  7. POJ 2449 Remmarguts' Date (第k短路径)

    Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions:35025   Accepted: 9467 ...

  8. POJ 1821 Fence (算竞进阶习题)

    单调队列优化dp 我们把状态定位F[i][j]表示前i个工人涂了前j块木板的最大报酬(中间可以有不涂的木板). 第i个工人不涂的话有两种情况: 那么F[i - 1][j], F[i][j - 1]就成 ...

  9. POJ 3974 Palindrome (算竞进阶习题)

    hash + 二分答案 数据范围肯定不能暴力,所以考虑哈希. 把前缀和后缀都哈希过之后,扫描一边字符串,对每个字符串二分枚举回文串长度,注意要分奇数和偶数 #include <iostream& ...

随机推荐

  1. java使用Map做缓存你真的用对了吗?弱引用WeakHashMap了解一下

    目录 关于缓存我们应该考虑什么?-intsmaze WeakHashMap弱引用-intsmaze 线程安全问题-intsmaze Collections-intsmaze ThreadLocal-i ...

  2. linus 下redis守护进程启动

    修改配置文件 sudo vim /usr/src/redis/redis.conf // 具体的安装目录不一样,以安装的时候为准 # 将daemonize 改为yes daemonize yes 重新 ...

  3. H5 标签选择器

    08-标签选择器 我是段落 我是段落 我是段落 我是段落 我是段落 我是标题 <!DOCTYPE html> <html lang="en"> <he ...

  4. POJ - 3468 线段树区间修改,区间求和

    由于是区间求和,因此我们在更新某个节点的时候,需要往上更新节点信息,也就有了tree[root].val=tree[L(root)].val+tree[R(root)].val; 但是我们为了把懒标记 ...

  5. Podfile语法参考(译)

    https://www.jianshu.com/p/8af475c4f717 2015.10.30 19:14* 字数 2496 阅读 35976评论 9喜欢 120 本文翻译自官方的Podfile ...

  6. Booth乘法

    先看一个例子,结合疑问看算法. 1.已知X=+0.0011 Y=-0.1011 求[XY]补 解:[x]补 =0.0011 , [-x]补 =1.1101,[y]补 =1.0101 部分积      ...

  7. day 7-13 数据库的数据类型

    一. 数据类型 存储引擎决定了表的类型,而表内存放的数据也要有不同的类型,每种数据类型都有自己的宽度,但宽度是可选的 注意:int类型的宽度是显示宽度,并非是数据的存储宽度 详细的介绍:http:// ...

  8. day 7-7 线程池与进程池

    一. 进程池与线程池 在刚开始学多进程或多线程时,我们迫不及待地基于多进程或多线程实现并发的套接字通信,然而这种实现方式的致命缺陷是:服务的开启的进程数或线程数都会随着并发的客户端数目地增多而增多,这 ...

  9. Leetcode SingleNumber I & II & III 136/137/260

    SingleNumber I: 题目链接:https://leetcode-cn.com/problems/single-number/ 题意: 给定一个非空整数数组,除了某个元素只出现一次以外,其余 ...

  10. js 解决中文乱码的问题

    1.对象 request response 对象setCharacterEncoding=UTF-8 1 <%@ page language="java" contentTy ...