River Problem HDU - 3947(公式建边)
River Problem
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 721 Accepted Submission(s): 282
The structure of the river contains n nodes and exactly n-1 edges between those nodes. It's just the same as all the rivers in this world: The edges are all unidirectional to represent water flows. There are source points, from which the water flows, and there is exactly one sink node, at which all parts of the river meet together and run into the sea. The water always flows from sources to sink, so from any nodes we can find a directed path that leads to the sink node. Note that the sink node is always labeled 1.
As you can see, some parts of the river are polluted, and we set a weight Wi for each edge to show how heavily polluted this edge is. We have m kinds of chemicals to clean the river. The i-th chemical can decrease the weight for all edges in the path from Ui to Vi by exactly 1. Moreover, we can use this kind of chemical for Li times, the cost for each time is Ci. Note that you can still use the chemical even if the weight of edges are 0, but the weight of that edge will not decrease this time.
When the weight of all edges are 0, the river is cleaned, please help us to clean the river with the least cost.
The first line of each block contains a number n (2<=n<=150) representing the number of nodes. The following n-1 lines each contains 3 numbers U, V, and W, means there is a directed edge from U to V, and the pollution weight of this edge is W. (1<=U,V<=n, 0<=W<=20)
Then follows an number m (1<=m<=2000), representing the number of chemical kinds. The following m lines each contains 4 numbers Ui, Vi, Li and Ci (1<=Ui,Vi<=n, 1<=Li<=20, 1<=Ci<=1000), describing a kind of chemical, as described above. It is guaranteed that from Ui we can always find a directed path to Vi.
3
2 1 2
3 1 1
1
3 1 2 2
3
2 1 2
3 1 1
2
3 1 2 2
2 1 2 1
Case #2: 4
和Noi2008 志愿者招募 一样 就是相邻的节点 不是连续的天数了 而是建立了一个图
用dfs走一遍 建图就好了
公式不用推 看懂 那个题想一下就好了
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = 1e5 + , INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff;
int n, m, s, t;
int head[maxn], d[maxn], vis[maxn], nex[maxn], f[maxn], p[maxn], cnt, head1[maxn], nex1[maxn];
int xu[maxn], flow, value, ans; struct edge
{
int u, v, c;
}Edge[maxn << ]; void addedge(int u, int v, int c)
{
Edge[ans].u = u;
Edge[ans].v = v;
Edge[ans].c = c;
nex1[ans] = head1[u];
head1[u] = ans++;
}; struct node
{
int u, v, w, c;
}Node[maxn << ]; void add_(int u, int v, int w, int c)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].w = w;
Node[cnt].c = c;
nex[cnt] = head[u];
head[u] = cnt++;
} void add(int u, int v, int w, int c)
{
add_(u, v, w, c);
add_(v, u, -w, );
} int spfa()
{
for(int i = ; i < maxn; i ++) d[i] = INF;
deque<int> Q;
mem(vis, );
mem(p, -);
Q.push_front(s);
d[s] = ;
p[s] = , f[s] = INF;
while(!Q.empty())
{
int u = Q.front(); Q.pop_front();
vis[u] = ;
for(int i = head[u];i != -; i = nex[i])
{
int v = Node[i].v;
if(Node[i].c)
{
if(d[v] > d[u] + Node[i].w)
{
d[v] = d[u] + Node[i].w;
p[v] = i;
f[v] = min(f[u], Node[i].c);
if(!vis[v])
{
// cout << v << endl;
if(Q.empty()) Q.push_front(v);
else
{
if(d[v] < d[Q.front()]) Q.push_front(v);
else Q.push_back(v);
}
vis[v] = ;
}
}
}
}
}
if(p[t] == -) return ;
flow += f[t], value += f[t] * d[t];
// cout << value << endl;
for(int i = t; i != s; i = Node[p[i]].u)
{
Node[p[i]].c -= f[t];
Node[p[i] ^ ].c += f[t];
}
return ;
} void max_flow()
{
flow = value = ;
while(spfa());
}
int sum_flow; void init()
{
mem(head, -);
mem(head1, -);
Edge[].c = ;
cnt = sum_flow = ;
ans = ;
} void dfs(int u, int pre_sum)
{
int sum = ;
for(int i = head1[u]; i != -; i = nex1[i])
{
int v = Edge[i].v;
add(u, v, , INF);
dfs(v, Edge[i].c);
sum += Edge[i].c; //要减去当前子节点的所有父节点的公式
}
int tmp = pre_sum - sum;
if(tmp > ) add(s, u, , tmp), sum_flow += tmp;
else add(u, t, , -tmp); } int id[maxn]; int main()
{
int T, kase = ;
int u, v, w, c;
rd(T);
while(T--)
{
init();
rd(n);
s = , t = n + ;
rap(i, , n - )
{
rd(u), rd(v), rd(w);
addedge(v, u, w); //反向建图 想一下是下一个公式减去上一个公式 即子结点减去父结点
}
addedge(t, , );
rd(m);
rap(i, , m)
{
rd(u), rd(v), rd(c), rd(w);
add(u, v, w, c);
}
dfs(, );
max_flow();
printf("Case #%d: ", ++kase);
if(sum_flow == flow)
cout << value << endl;
else
cout << - << endl; } return ;
}
River Problem
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 721 Accepted Submission(s): 282
The structure of the river contains n nodes and exactly n-1 edges between those nodes. It's just the same as all the rivers in this world: The edges are all unidirectional to represent water flows. There are source points, from which the water flows, and there is exactly one sink node, at which all parts of the river meet together and run into the sea. The water always flows from sources to sink, so from any nodes we can find a directed path that leads to the sink node. Note that the sink node is always labeled 1.
As you can see, some parts of the river are polluted, and we set a weight Wi for each edge to show how heavily polluted this edge is. We have m kinds of chemicals to clean the river. The i-th chemical can decrease the weight for all edges in the path from Ui to Vi by exactly 1. Moreover, we can use this kind of chemical for Li times, the cost for each time is Ci. Note that you can still use the chemical even if the weight of edges are 0, but the weight of that edge will not decrease this time.
When the weight of all edges are 0, the river is cleaned, please help us to clean the river with the least cost.
The first line of each block contains a number n (2<=n<=150) representing the number of nodes. The following n-1 lines each contains 3 numbers U, V, and W, means there is a directed edge from U to V, and the pollution weight of this edge is W. (1<=U,V<=n, 0<=W<=20)
Then follows an number m (1<=m<=2000), representing the number of chemical kinds. The following m lines each contains 4 numbers Ui, Vi, Li and Ci (1<=Ui,Vi<=n, 1<=Li<=20, 1<=Ci<=1000), describing a kind of chemical, as described above. It is guaranteed that from Ui we can always find a directed path to Vi.
3
2 1 2
3 1 1
1
3 1 2 2
3
2 1 2
3 1 1
2
3 1 2 2
2 1 2 1
Case #2: 4
River Problem HDU - 3947(公式建边)的更多相关文章
- HDU 3947 River Problem
River Problem Time Limit: 2000ms Memory Limit: 65536KB This problem will be judged on HDU. Original ...
- Flow Problem HDU - 3549
Flow Problem HDU - 3549 Network flow is a well-known difficult problem for ACMers. Given a graph, yo ...
- D - Ugly Problem HDU - 5920
D - Ugly Problem HDU - 5920 Everyone hates ugly problems. You are given a positive integer. You must ...
- Prime Ring Problem HDU - 1016 (dfs)
Prime Ring Problem HDU - 1016 A ring is compose of n circles as shown in diagram. Put natural number ...
- 志愿者招募 HYSBZ - 1061(公式建图费用流)
转自神犇:https://www.cnblogs.com/jianglangcaijin/p/3799759.html 题意:申奥成功后,布布经过不懈努力,终于 成为奥组委下属公司人力资源部门的主管. ...
- HDU 3947 Assign the task
http://acm.hdu.edu.cn/showproblem.php?pid=3974 Problem Description There is a company that has N emp ...
- (线段树 区间查询)The Water Problem -- hdu -- 5443 (2015 ACM/ICPC Asia Regional Changchun Online)
链接: http://acm.hdu.edu.cn/showproblem.php?pid=5443 The Water Problem Time Limit: 1500/1000 MS (Java/ ...
- 差分约束系统+(矩阵)思维(H - THE MATRIX PROBLEM HDU - 3666 )
题目链接:https://cn.vjudge.net/contest/276233#problem/H 题目大意:对于给定的矩阵 每一行除以ai 每一列除以bi 之后 数组的所有元素都还在那个L- ...
- HDU 4522 (恶心建图)
湫湫系列故事——过年回家 Time Limit: 500/200 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total ...
随机推荐
- 原生jS之-去掉字符串开头和结尾的空字符
怎么解决这个问题?? 思路就是我们利用正则匹配到所谓的空格,然后替换为空字符,我们要用到的是str的replace API 代码如下: <!DOCTYPE html> <html l ...
- Thrift序列化与反序列化
Thrift序列化与反序列化的实现机制分析 Thrift是如何实现序死化与反序列化的,在IDL文件中,更改IDL文件中的变量序号或者[使用默认序号的情况下,新增变量时,将新增的变量不放在IDL文件的结 ...
- 使用json读写文件中的数据
把json的数据写入到文件中 import json with open('data.json','w+') as f: json.dump({"name":"张彪&qu ...
- 阿里云CodePipeline vs Jenkins
产品概述_产品简介_CodePipeline-阿里云 https://help.aliyun.com/document_detail/56512.html CodePipeline管理控制台https ...
- http/https与websocket的ws/wss的关系以及通过Nginx的配置
http/https与websocket的ws/wss的关系 - 哒哒哒 - CSDN博客 https://blog.csdn.net/Garrettzxd/article/details/81674 ...
- 移动端和PC端页面常用的弹出层
我们在页面的时候,很多时候用到了弹出层,消息提醒,确认框等等,统一样式的弹出框可以使页面更加优美.在此,我整理一下我们项目的移动端和PC端页面常用的弹出层. 一.移动端 我们需在页面引入弹出框的样式和 ...
- [转帖]Windows和Linux对决(多进程多线程)
Windows和Linux对决(多进程多线程) https://blog.csdn.net/world_2015/article/details/44920467 太长了 还没看完.. 还是没太理解好 ...
- Unit 1.前端基础之html
一.什么是html 定义:全称是超文本标记语言(HyperText Markup Language),它是一种用于创建网页的标记语言.标记语言是一种将文本(Text)以及文本相关的其他信息结合起来,展 ...
- flutter图片铺满父框
正常我们需要显示一张图片,会用到Image这个控件. 打个比方,我们加载一张本地的图片, 先看一下这个Image.asset的源码: Image.asset(String name, { Key ke ...
- Django项目目录介绍
一个小问题: 什么是根目录:就是没有路径,只有域名..url(r'^$') 补充一张关于wsgiref模块的图片 一.MTV模型 Django的MTV分别代表: Model(模型):和数据库相关的,负 ...