River Problem

Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 721    Accepted Submission(s): 282

Problem Description
The River of Bitland is now heavily polluted. To solve this problem, the King of Bitland decides to use some kinds of chemicals to make the river clean again.

The structure of the river contains n nodes and exactly n-1 edges between those nodes. It's just the same as all the rivers in this world: The edges are all unidirectional to represent water flows. There are source points, from which the water flows, and there is exactly one sink node, at which all parts of the river meet together and run into the sea. The water always flows from sources to sink, so from any nodes we can find a directed path that leads to the sink node. Note that the sink node is always labeled 1.

As you can see, some parts of the river are polluted, and we set a weight Wi for each edge to show how heavily polluted this edge is. We have m kinds of chemicals to clean the river. The i-th chemical can decrease the weight for all edges in the path from Ui to Vi by exactly 1. Moreover, we can use this kind of chemical for Li times, the cost for each time is Ci. Note that you can still use the chemical even if the weight of edges are 0, but the weight of that edge will not decrease this time.

When the weight of all edges are 0, the river is cleaned, please help us to clean the river with the least cost.

 
Input
The first line of the input is an integer T representing the number of test cases. The following T blocks each represents a test case.

The first line of each block contains a number n (2<=n<=150) representing the number of nodes. The following n-1 lines each contains 3 numbers U, V, and W, means there is a directed edge from U to V, and the pollution weight of this edge is W. (1<=U,V<=n, 0<=W<=20)

Then follows an number m (1<=m<=2000), representing the number of chemical kinds. The following m lines each contains 4 numbers Ui, Vi, Li and Ci (1<=Ui,Vi<=n, 1<=Li<=20, 1<=Ci<=1000), describing a kind of chemical, as described above. It is guaranteed that from Ui we can always find a directed path to Vi.

 
Output
First output "Case #k: ", where k is the case numbers, then follows a number indicating the least cost you are required to calculate, if the answer does not exist, output "-1" instead.
 
Sample Input
2
3
2 1 2
3 1 1
1
3 1 2 2
3
2 1 2
3 1 1
2
3 1 2 2
2 1 2 1
 
Sample Output
Case #1: -1
Case #2: 4
 
Author
Thost & Kennethsnow
 

Noi2008 志愿者招募 一样 就是相邻的节点  不是连续的天数了 而是建立了一个图

用dfs走一遍  建图就好了

公式不用推  看懂 那个题想一下就好了

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = 1e5 + , INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff;
int n, m, s, t;
int head[maxn], d[maxn], vis[maxn], nex[maxn], f[maxn], p[maxn], cnt, head1[maxn], nex1[maxn];
int xu[maxn], flow, value, ans; struct edge
{
int u, v, c;
}Edge[maxn << ]; void addedge(int u, int v, int c)
{
Edge[ans].u = u;
Edge[ans].v = v;
Edge[ans].c = c;
nex1[ans] = head1[u];
head1[u] = ans++;
}; struct node
{
int u, v, w, c;
}Node[maxn << ]; void add_(int u, int v, int w, int c)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].w = w;
Node[cnt].c = c;
nex[cnt] = head[u];
head[u] = cnt++;
} void add(int u, int v, int w, int c)
{
add_(u, v, w, c);
add_(v, u, -w, );
} int spfa()
{
for(int i = ; i < maxn; i ++) d[i] = INF;
deque<int> Q;
mem(vis, );
mem(p, -);
Q.push_front(s);
d[s] = ;
p[s] = , f[s] = INF;
while(!Q.empty())
{
int u = Q.front(); Q.pop_front();
vis[u] = ;
for(int i = head[u];i != -; i = nex[i])
{
int v = Node[i].v;
if(Node[i].c)
{
if(d[v] > d[u] + Node[i].w)
{
d[v] = d[u] + Node[i].w;
p[v] = i;
f[v] = min(f[u], Node[i].c);
if(!vis[v])
{
// cout << v << endl;
if(Q.empty()) Q.push_front(v);
else
{
if(d[v] < d[Q.front()]) Q.push_front(v);
else Q.push_back(v);
}
vis[v] = ;
}
}
}
}
}
if(p[t] == -) return ;
flow += f[t], value += f[t] * d[t];
// cout << value << endl;
for(int i = t; i != s; i = Node[p[i]].u)
{
Node[p[i]].c -= f[t];
Node[p[i] ^ ].c += f[t];
}
return ;
} void max_flow()
{
flow = value = ;
while(spfa());
}
int sum_flow; void init()
{
mem(head, -);
mem(head1, -);
Edge[].c = ;
cnt = sum_flow = ;
ans = ;
} void dfs(int u, int pre_sum)
{
int sum = ;
for(int i = head1[u]; i != -; i = nex1[i])
{
int v = Edge[i].v;
add(u, v, , INF);
dfs(v, Edge[i].c);
sum += Edge[i].c; //要减去当前子节点的所有父节点的公式
}
int tmp = pre_sum - sum;
if(tmp > ) add(s, u, , tmp), sum_flow += tmp;
else add(u, t, , -tmp); } int id[maxn]; int main()
{
int T, kase = ;
int u, v, w, c;
rd(T);
while(T--)
{
init();
rd(n);
s = , t = n + ;
rap(i, , n - )
{
rd(u), rd(v), rd(w);
addedge(v, u, w); //反向建图 想一下是下一个公式减去上一个公式 即子结点减去父结点
}
addedge(t, , );
rd(m);
rap(i, , m)
{
rd(u), rd(v), rd(c), rd(w);
add(u, v, w, c);
}
dfs(, );
max_flow();
printf("Case #%d: ", ++kase);
if(sum_flow == flow)
cout << value << endl;
else
cout << - << endl; } return ;
}

River Problem

Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 721    Accepted Submission(s): 282

Problem Description
The River of Bitland is now heavily polluted. To solve this problem, the King of Bitland decides to use some kinds of chemicals to make the river clean again.

The structure of the river contains n nodes and exactly n-1 edges between those nodes. It's just the same as all the rivers in this world: The edges are all unidirectional to represent water flows. There are source points, from which the water flows, and there is exactly one sink node, at which all parts of the river meet together and run into the sea. The water always flows from sources to sink, so from any nodes we can find a directed path that leads to the sink node. Note that the sink node is always labeled 1.

As you can see, some parts of the river are polluted, and we set a weight Wi for each edge to show how heavily polluted this edge is. We have m kinds of chemicals to clean the river. The i-th chemical can decrease the weight for all edges in the path from Ui to Vi by exactly 1. Moreover, we can use this kind of chemical for Li times, the cost for each time is Ci. Note that you can still use the chemical even if the weight of edges are 0, but the weight of that edge will not decrease this time.

When the weight of all edges are 0, the river is cleaned, please help us to clean the river with the least cost.

 
Input
The first line of the input is an integer T representing the number of test cases. The following T blocks each represents a test case.

The first line of each block contains a number n (2<=n<=150) representing the number of nodes. The following n-1 lines each contains 3 numbers U, V, and W, means there is a directed edge from U to V, and the pollution weight of this edge is W. (1<=U,V<=n, 0<=W<=20)

Then follows an number m (1<=m<=2000), representing the number of chemical kinds. The following m lines each contains 4 numbers Ui, Vi, Li and Ci (1<=Ui,Vi<=n, 1<=Li<=20, 1<=Ci<=1000), describing a kind of chemical, as described above. It is guaranteed that from Ui we can always find a directed path to Vi.

 
Output
First output "Case #k: ", where k is the case numbers, then follows a number indicating the least cost you are required to calculate, if the answer does not exist, output "-1" instead.
 
Sample Input
2
3
2 1 2
3 1 1
1
3 1 2 2
3
2 1 2
3 1 1
2
3 1 2 2
2 1 2 1
 
Sample Output
Case #1: -1
Case #2: 4
 
Author
Thost & Kennethsnow
 

River Problem HDU - 3947(公式建边)的更多相关文章

  1. HDU 3947 River Problem

    River Problem Time Limit: 2000ms Memory Limit: 65536KB This problem will be judged on HDU. Original ...

  2. Flow Problem HDU - 3549

    Flow Problem HDU - 3549 Network flow is a well-known difficult problem for ACMers. Given a graph, yo ...

  3. D - Ugly Problem HDU - 5920

    D - Ugly Problem HDU - 5920 Everyone hates ugly problems. You are given a positive integer. You must ...

  4. Prime Ring Problem HDU - 1016 (dfs)

    Prime Ring Problem HDU - 1016 A ring is compose of n circles as shown in diagram. Put natural number ...

  5. 志愿者招募 HYSBZ - 1061(公式建图费用流)

    转自神犇:https://www.cnblogs.com/jianglangcaijin/p/3799759.html 题意:申奥成功后,布布经过不懈努力,终于 成为奥组委下属公司人力资源部门的主管. ...

  6. HDU 3947 Assign the task

    http://acm.hdu.edu.cn/showproblem.php?pid=3974 Problem Description There is a company that has N emp ...

  7. (线段树 区间查询)The Water Problem -- hdu -- 5443 (2015 ACM/ICPC Asia Regional Changchun Online)

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=5443 The Water Problem Time Limit: 1500/1000 MS (Java/ ...

  8. 差分约束系统+(矩阵)思维(H - THE MATRIX PROBLEM HDU - 3666 )

    题目链接:https://cn.vjudge.net/contest/276233#problem/H 题目大意:对于给定的矩阵  每一行除以ai  每一列除以bi 之后 数组的所有元素都还在那个L- ...

  9. HDU 4522 (恶心建图)

    湫湫系列故事——过年回家 Time Limit: 500/200 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total ...

随机推荐

  1. Technical Development Guide---for Google

    Technical Development Guide This guide provides tips and resources to help you develop your technica ...

  2. CF每日一练 Codeforces Round #520 (Div. 2)

    比赛过程总结:过程中有事就玩手机了,后面打的状态不是很好,A题理解错题意,表明了内心不在状态,B题想法和思路都是完全正确的,但是并没有写出来,因为自己代码能力不强,思路不是特别清晰,把代码后面写乱了, ...

  3. JS 作用域及作用域链

    一.作用域 在 Javascript 中,作用域分为 全局作用域 和 函数作用域 全局作用域: 代码在程序的任何地方都能被访问,window 对象的内置属性都拥有全局作用域. 函数作用域: 在固定的代 ...

  4. 用python实现一个回文数

    判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: 从左向 ...

  5. ElasticSearch聚合

    前言 说完了ES的索引与检索,接着再介绍一个ES高级功能API – 聚合(Aggregations),聚合功能为ES注入了统计分析的血统,使用户在面对大数据提取统计指标时变得游刃有余.同样的工作,你在 ...

  6. Mysql MyISAM与InnoDB 表锁行锁以及分库分表优化

    一. 两种存储引擎:MyISAM与InnoDB 区别与作用 1. count运算上的区别: 因为MyISAM缓存有表meta-data(行数等),因此在做COUNT(*)时对于一个结构很好的查询是不需 ...

  7. HDU 1089 到1096 a+b的输入输出练习

    http://acm.hdu.edu.cn/showproblem.php?pid=1089 Problem Description Your task is to Calculate a + b.T ...

  8. Nginx负载均衡各种配置方式

    Nginx负载均衡 - 小刚qq - 博客园http://www.cnblogs.com/xiaogangqq123/archive/2011/03/04/1971002.html Module ng ...

  9. vue上传图片

    在用这块代码前需要在主页面index引入<script src="http://at.alicdn.com/t/font_kfbh2nlnqrrudi.js">< ...

  10. 对B+树,B树,红黑树的理解

    出处:https://www.jianshu.com/p/86a1fd2d7406 写在前面,好像不同的教材对b树,b-树的定义不一样.我就不纠结这个到底是叫b-树还是b-树了. 如图所示,区别有以下 ...