求$\sqrt{\dfrac{5}{4}-\sin x}+2\sqrt{\dfrac{9}{4}+\cos x-\sin x}$的最小值.


提示:
$\sqrt{\dfrac{5}{4}-\sin x}+2\sqrt{\dfrac{9}{4}+\cos x-\sin x}$

$=\sqrt{(\dfrac{1}{2}\cos x)^2+(1-\dfrac{1}{2}\sin x)^2}+2\sqrt{(\dfrac{1}{2}\cos x+1)^2+(\dfrac{1}{2}\sin x-1)^2}$
令$A(-1,1),B(0,1),D(0,\dfrac{1}{4}),C(\dfrac{1}{2}cos x,\dfrac{1}{2}sin x)$
则由内外圆知识$|BC|+2|AC|=2(|DC|+|AC|)\ge 2AD=\dfrac{5}{2}$

练习:MT 【191】阿波罗尼乌兹圆

MT【290】内外圆求三角最值的更多相关文章

  1. MT【271】一道三角最值问题

    若不等式$k\sin^2B+\sin A\sin C>19\sin B\sin C$对任意$\Delta ABC$都成立,则$k$的最小值为_____ 分析:由正弦定理得$k>\dfrac ...

  2. MT【32】内外圆(Apollonius Circle)的几何证明

    另一方面,如果 M 满足(1)式,那么M必然在以PQ为直径的圆上.事实上当M为P或者Q时,这是显然的.当M异于P,Q时,由$\frac{|MB|}{|MC|}=\frac{|PB|}{|PC|}=\l ...

  3. MT【172】内外圆

    $P,Q$是两个定点,M为平面内一个动点,且$\dfrac{|MP|}{|MQ|}=\lambda(\lambda>0,\lambda\ne1)$, 点M的轨迹围成的区域面积为S , 设$S=f ...

  4. 《用C++语言编写一个程序,求PI的值》

    //编写一个C++程序求PI的值 /* PI=16arctan(1/5)-4arctan(1/239) 其中arctan用如下形式的极数计算: arctan=x-(x^3/3)+(x^5/7)-(x^ ...

  5. hdu3183 rmq求区间最值的下标

    两个月前做的题,以后可以看看,是rmq关于求区间最值的下标 /* hdu3183 终点 给一个整数,可以删除m位,留下的数字形成一个新的整数 rmq 取n-m个数,使形成的数最小 */ #includ ...

  6. xdoj-1324 (区间离散化-线段树求区间最值)

    思想 : 1 优化:题意是覆盖点,将区间看成 (l,r)转化为( l-1,r) 覆盖区间 2 核心:dp[i]  覆盖从1到i区间的最小花费 dp[a[i].r]=min (dp[k])+a[i]s; ...

  7. hdu 5443 (2015长春网赛G题 求区间最值)

    求区间最值,数据范围也很小,因为只会线段树,所以套了线段树模板=.= Sample Input3110011 151 2 3 4 551 21 32 43 43 531 999999 141 11 2 ...

  8. POJ - 3264 Balanced Lineup (RMQ问题求区间最值)

    RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就 ...

  9. 用for和while循环求e的值[e=1+1/1!+1/2!+1/3!+1/4!+1/5!+...+1/n!]

    /*编敲代码,依据下面公式求e的值. 要求用两种方法计算: 1)for循环.计算前50项 2)while循环,直至最后一项的值小于10-4 e=1+1/1!+1/2!+1/3!+1/4!+1/5!+. ...

随机推荐

  1. ASP.NET项目开发

    ASP.NET项目开发 1.C/S模式 (client 客户端 server 服务器):QQ.证券.酷狗.旺旺...需要下载响应软件: 工作原理:客户端请求--ASP.net服务器端应用(<-- ...

  2. composer 自动加载 通过classmap自动架子啊

    https://github.com/brady-wang/composer github地址 composer加载自己写的类 放入一个目录下 更改composer.json "autolo ...

  3. java.lang(StringBuffer)

    public final class StringBuffer extends AbstractStringBuilder implements java.io.Serializable, CharS ...

  4. Notepad++ 安装 NppFTP 插件

    How to install a plugin The plugin (in the DLL form) should be placed in the \plugins subfolder of t ...

  5. servlet中将值以json格式传入

    详细连接https://blog.csdn.net/e_wsq/article/details/71038270$('#but_json_json').click(function(){ }; $.a ...

  6. 关于idea easyui 引入css js

    1.引用官方网站 <link rel="stylesheet" type="text/css" href="http://www.w3cscho ...

  7. NIO和经典IO

    NIO未必更快,在Linux上使用Java6完成的测试中,多线程经典I/O设计胜出NIO30%左右 异步I/O强于经典I/O:服务器需要支持超大量的长期连接,比如10000个连接以上,不过各个客户端并 ...

  8. Docker入门与实践

      一.Docker介绍 docker官网:https://www.docker.com/ Docker hub地址: https://hub.docker.com/   1.基本概念 Docker ...

  9. Django 2.11 静态页面404 解决

    在settings中配置 STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR,"static"), ...

  10. 设计模式笔记:开闭原则(OCP,The Open-Closed Principle)

    1. 开闭原则概述 开闭原则(OCP,The Open-Closed Principle)两个主要特征: (1)对扩展开放(open for extension):模块的行为的可以扩展的,当应用的需求 ...