【XSY1162】鬼计之夜 最短路
题目描述
给你一个\(n\)个点\(m\)条边的有向图,有\(k\)个关键点。求一条最短的从一个关键点到另一个关键点的路径。
\(n,m,k\leq 100000\)
题解
跑\(k^2\)次最短路显然会TLE
考虑两个不同的数有什么可以利用的性质。
其中会有至少一个二进制为不同!
所以可以枚举所有二进制位,从\(0\)的那边向\(1\)的那边跑最短路,再从\(1\)的那边向\(0\)的那边跑最短路。
这样最终答案一定会被计算到。
时间复杂度:\(O(m\log n\log k)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<queue>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,int> pli;
struct graph
{
int h[100010];
int v[100010];
int w[100010];
int t[100010];
int n;
graph()
{
n=0;
memset(h,0,sizeof h);
}
void add(int x,int y,int z)
{
n++;
v[n]=y;
w[n]=z;
t[n]=h[x];
h[x]=n;
}
};
graph g;
//int lx[100010];
//int ly[100010];
//int lz[100010];
ll d[100010];
int b[100010];
int c[100010];
int n,m,k;
priority_queue<pli,vector<pli>,greater<pli> > q;
ll dij(int y)
{
int i;
memset(b,0,sizeof b);
for(i=1;i<=k;i++)
if((i>>(y-1))&1)
q.push(pli(0,c[i]));
while(!q.empty())
{
pli x=q.top();
q.pop();
if(b[x.second])
continue;
b[x.second]=1;
d[x.second]=x.first;
for(i=g.h[x.second];i;i=g.t[i])
q.push(pli(x.first+g.w[i],g.v[i]));
}
ll ans=0x7fffffffffffffffll;
for(i=1;i<=k;i++)
if(b[c[i]]&&!((i>>(y-1))&1))
ans=min(ans,d[c[i]]);
return ans;
}
ll dij2(int y)
{
int i;
memset(b,0,sizeof b);
for(i=1;i<=k;i++)
if(!((i>>(y-1))&1))
q.push(pli(0,c[i]));
while(!q.empty())
{
pli x=q.top();
q.pop();
if(b[x.second])
continue;
b[x.second]=1;
d[x.second]=x.first;
for(i=g.h[x.second];i;i=g.t[i])
q.push(pli(x.first+g.w[i],g.v[i]));
}
ll ans=0x7fffffffffffffffll;
for(i=1;i<=k;i++)
if(b[c[i]]&&(i>>(y-1))&1)
ans=min(ans,d[c[i]]);
return ans;
}
int main()
{
int x,y,z,i;
scanf("%d%d%d",&n,&m,&k);
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
g.add(x,y,z);
}
for(i=1;i<=k;i++)
scanf("%d",&c[i]);
ll ans=0x7fffffffffffffffll;
for(i=1;i<=17;i++)
{
ans=min(ans,dij(i));
ans=min(ans,dij2(i));
}
printf("%lld\n",ans);
return 0;
}
【XSY1162】鬼计之夜 最短路的更多相关文章
- 【xsy1162】鬼计之夜 最短路+二进制拆分
套路题(然而我没看题解做不出来) 题目大意:给你一个$n$个点,$m$条有向边的图.图中有$k$个标记点,求距离最近的标记点间距离. 数据范围:$n,m,k≤10^5$. 设$p_i表$示第$i$个标 ...
- Python中三目计算符的正确用法及短路逻辑
今天在看别人代码时看到这样一种写法, 感觉是个挺容易踩到的坑, 搞清楚后写出来备忘. 短路逻辑 Python中进行逻辑运算的时候, 默认采用的是一种叫做短路逻辑的运算规则. 名字是很形象的, 下面直接 ...
- 计蒜客 28202. Failing Components-最短路(Dijkstra) (BAPC 2014 Preliminary ACM-ICPC Asia Training League 暑假第一阶段第一场 B)
B. Failing Components 传送门 题意就是单向图,从起点开始找最短路,然后统计一下个数就可以.方向是从b到a,权值为s. 直接最短路跑迪杰斯特拉,一开始用数组版的没过,换了一个队列版 ...
- 计蒜客 39280.Travel-二分+最短路dijkstra-二分过程中保存结果,因为二分完最后的不一定是结果 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest M.) 2019ICPC西安邀请赛现场赛重现赛
Travel There are nn planets in the MOT galaxy, and each planet has a unique number from 1 \sim n1∼n. ...
- 计蒜客 31001 - Magical Girl Haze - [最短路][2018ICPC南京网络预赛L题]
题目链接:https://nanti.jisuanke.com/t/31001 题意: 一带权有向图,有 n 个节点编号1~n,m条有向边,现在一人从节点 1 出发,他有最多 k 次机会施展魔法使得某 ...
- UOJ244 【UER #7】短路
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- HDU 5521 Meeting(虚拟节点+最短路)
Meeting Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others) Total ...
- Web前端业界氛围极好的群——鬼懿IT
鬼群简介 鬼懿IT主群号:,鬼懿IT-成长群:181368696 , 创建于2005年12月 ,聚集的业内人事包括:阿当,大漠,辣妈,崔凯,Rei,周裕波,司徒正美,丸子,鬼森林,寒冬,franky, ...
- 【网络流24题】 No.14 孤岛营救问题 (分层图最短路)
[题意] 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛, 营救被敌军俘虏的大兵瑞恩. 瑞恩被关押在一个迷宫里, 迷宫地形复杂, 但幸好麦克得到了迷宫的地形图. 迷宫的外形是 ...
随机推荐
- codeforces#687 B. Remainders Game
题意:给出n个数,和一个数p,问你在知道 x%ai 的情况下,能不能确定x%p的值 结论:当n个数的最小公倍数是p的倍数时,可以确定 代码: #include <bits/stdc++.h&g ...
- Graph Without Long Directed Paths CodeForces - 1144F (dfs染色)
You are given a connected undirected graph consisting of nn vertices and mm edges. There are no self ...
- elasticsearch elk最全java api 搜索 聚合、嵌套查询
目录 一. 一般查询... 2 (一) matchAllQuery(client). 2 (二) matchQuery(client);3 (三) multiMatchQuery(client);3 ...
- redis 运维手册
redis cli命令 - milkty - 博客园https://www.cnblogs.com/kongzhongqijing/p/6867960.html Redis多个数据库 - EasonJ ...
- 【Python3练习题 019】 有一分数序列:2/1,3/2,5/3,8/5,13/8,21/13...求出这个数列的前20项之和。
后一个分数的分子=前一个分数的分子+分母,后一个分数的分母=前一个分数的分子,循环个20次就有结果.注意,假设分子为a,分母为b,虽然 a = a + b, 但此时a已经变成 a+b 了,所以再给b重 ...
- Python解释器有哪些?Python解释器种类
Python是一门解释器语言,代码想运行,必须通过解释器执行,Python存在多种解释器,分别基于不同语言开发,每个解释器有不同的特点,但都能正常运行Python代码,以下是常用的五种Python解释 ...
- 初步了解HTTP
HTTP简介: HTTP:HyperText Transfer Protocol 超文本传输协议,是因特网上使用最为广泛的一种网络传输议,是用于从万维网(www :world wide web)服 ...
- select非group by字段的方法
只需要将非group by字段放进函数中即可:
- python爬虫之scrapy文件下载
我们在写普通脚本的时候,从一个网站拿到一个文件的下载url,然后下载,直接将数据写入文件或者保存下来,但是这个需要我们自己一点一点的写出来,而且反复利用率并不高,为了不重复造轮子,scrapy提供很流 ...
- 除了binlog2sql工具外,使用python脚本闪回数据(数据库误操作)
利用binlog日志恢复数据库误操作数据 在人工手动进行一些数据库写操作的时候(比方说数据修改),尤其是一些不可控的批量更新或删除,通常都建议备份后操作.不过不怕万一,就怕一万,有备无患总是好的.在线 ...